

Doctoral Program in
Materials Science and Engineering
EDMX

PhD Course

MSE-670

Advanced Microscopy for Magnetic Materials

Chiral magnets were known for decades to host a specific but unclear magnetic phase (A phase) below a critical temperature at which their magnetic ordering occurred. In 2009, neutron scattering in an unconventional configuration, i.e., in a magnetic field applied parallel to the neutron propagation direction, obtained reciprocal space data that suggested an ordered lattice of magnetic skyrmions. Two years later, Lorentz transmission electron microscopy provided real-space imaging of the nanoscale and topologically protected spin whirls.

The sinergia project 171003 “Discovery and Nanoengineering of Novel Skyrmion-hosting Materials” aimed at further exploring the fundamental properties of non-collinear spin structures in chiral magnets and their possible functionalization in modern technologies covering frequencies from DC to several GHz. In the framework of this interdisciplinary project funded by the Swiss National Science Foundation (<https://www.epfl.ch/labs/lmgn/skyrmions/>) magnetic imaging techniques and microscopy were further developed. The research in the consortium stimulated this PhD course MSE-670 which attracted funding from the doctoral school at EPFL (EDOC).

We are happy that experts from within Switzerland and surrounding European countries contribute lectures to MSE-670. They reflect the latest state of different magnetic characterization and microscopy techniques. We particularly acknowledge Prof. R. Dunin-Borkowski (FZ Juelich, Germany), Dr. V. Ukleev (Bessy, Berlin, Germany), Dr. P. Che (Thales/Paris Sud, France) and Prof. M. Poggio (U Basel, CH) for coming to EPFL campus and offering in-person lectures together with Prof. F. Carbone (EPFL), Dr. P. Tengdin (EPFL) and the organizers. We thank all the lecturers for their efforts put into this PhD course, the administration at EDMX, and EDOC for financial support which allows lecturers and PhD students to interact closely in the framework of this block course.

Thomas Lagrange and Dirk Grundler, Lausanne, EPFL, November 2022

Front page: Data (colored) obtained by a scanning probe microscopy (magnetic force microscope) on ferromagnetic nanoelements forming an artificial magnetic quasicrystal. The blue and red colors indicate north and south poles, respectively, of the sub-100nm wide nanomagnets.

Course Title:
Advanced Microscopy techniques for characterizing the magnetic properties of materials
MSE-670

Course Description:

Recent advances in X-ray, optical, scanning probe, and electron microscopy techniques allow one to characterize and image the static and dynamic magnetic configurations of nanostructures and non-collinear spin systems down to the nanoscale. These pump-probe techniques can explore spin dynamics with high spatial resolution down to sub-ns timescales. The techniques are based on principles such as transmission electron microscopy, x-ray scattering, x-ray, and electron magnetic dichroism, scanning probe microscopy, and inelastic light scattering. They probe different physical quantities and provide complementary information for fundamental research on magnetic materials and their functional properties, e.g., magnetic storage, spintronics, and magnonics. Swiss research groups have contributed to recent technological advancements, and the magnetism research community is continuously growing. Hence, this course provides an overview and specific insight into advanced optical, x-ray, and electron microscopy techniques for the characterization of magnetic properties of materials. The planned course allows Ph.D. students to acquire theoretical knowledge through lectures and get practical insight via live demonstrations performed in different labs on the EPFL campus.

Plan: 3-day block course for Ph.D. students held on Nov. 16th-18th, 2022

- (A) 2.5 days – 90 min (including examples and Q&A sessions) lectures from 8 experts (4 external and 5 internal). Online recordings will be provided and accessible in a Moodle, as well as slide handouts and literature references. The lectures are numbered as follows.
- (B) 0.5-day demonstrations- LTEM (CIME Titan Facility, EPFL), BLS (LMGN, EPFL), and MOKE (LUMES, EPFL)

Agenda

Day 1: (Lecture are of 2x45 min plus a 15 min break) in MXF-312

9h30-10h15

Welcome coffee

10h15-12h

- 1) Dirk Grundler, Professor, EPFL “Introduction-Materials science of magnetic materials.”

12h15-13h15

Lunch served in the meeting room

13h30-15h15

- 2) Victor Ukleev, Staff Scientist, BESSYII, Berlin, Germany “Static and dynamic magnetic imaging using x-ray based techniques.”

15h30-17h15

- 3) Thomas La Grange, Senior Scientist, EPFL "Lorentz Transmission Electron Microscopy: Theory, Practice, Simulations, and Quantitative Phase reconstruction."

Day 2: in MXF-312

8h30-10h15

- 4) Fabrizio Carbone, Professor, EPFL "In-situ and Ultrafast Lorentz Transmission Electron Microscopy (LTEM)"

10h30-12h15h

- 5) Martino Poggio, Professor Department of Physics, University of Basel "Nanomagnetic studies using scanning probe microscopy techniques"

12h30-13h30

Lunch served in the meeting room

13h45h-15h30

- 6) Rafal Dunin-Borkowski: Director of Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Juelich, Germany, "Electron Holography: Theory, Practical Examples from Medium to Atomic resolution."

15h45-18h LTEM demonstration and free discussion

Students are separated into 3 groups for LTEM Demonstration (45 min) at CIME Titan Facility, EPFL (MXC 014). Groups of 7-8 people are formed due to limited space in the microscope room. The remaining time is for free discussion/preparation for test.

Day 3: in MED2 1124

10h15-12h

- 7) Ping Che, Scientist, Université Paris-Saclay (UMR-137), France "Characterizing magnetic materials using inelastic Brillouin light scattering (BLS) technique"

12h15-13h15

Free Lunch

13h30-15h15

- 8) Phoebe Tengdin, Scientist, EPFL "Ultrafast Optical Spectroscopy and Imaging Techniques: Magnetic Optical Kerr Effect (MOKE)"

15h30-17h30

Demonstrations 45 min each on BLS (LMGN, EPFL), and on MOKE (LUMES, CH H0 604 EPFL)

17h45 – 18h15 Written Test for PhD students aiming at credits

EPFL

MSE-670

Advanced magnetic microscopy

Fall 2022

Lecture 1: [Introduction](#)

[Materials science of magnetic materials](#)

Lecturer: Prof. Dirk Grundler

Laboratory of Nanoscale Magnetic Materials and Magnonics
lmgn.epfl.ch

dirk.grundler@epfl.ch

BM3141

Institute of Materials

LABORATORY OF NANOSCALE MAGNETIC MATERIALS AND MAGNONICS LMGN

[Home](#) Research Teaching People Publications Collaborations
Share: [f](#) [v](#) [in](#) [g](#) [e](#)

Welcome to LMGN

Competences and Objectives

Magnetic properties of nanostructured materials
Nanofabrication and cleanroom processing
Microwave properties of magnetic nanomaterials
GHz spectroscopy
Magnonics
Spintronics
Skyrmionics

The Laboratory of Nanoscale Magnetic Materials and Magnonics (LMGN) aims at the exploitation of magnetic nanomaterials for information technology (data processing, transmission, logic), sensing and multifunctional devices. In our experiments and simulations, we prepare and explore individual ferromagnetic nanostructures such as **nanotubes**, periodic and aperiodic nanomagnet arrangements such as **magnonic crystals**, artificial spin ice and quasicrystals as well as Skyrmion lattices. We study their fundamental properties and aim at novel functionalities.

The focus is devoted to the microwave properties of magnetic materials in the few GHz to 100 GHz frequency regime. Here, electromagnetic waves that, in free space, exhibit a wavelength of several

Introduction to magnetic materials

Synopsis: Magnetic materials offer a rich versatility in modern technologies (information technology, daily appliances, renewable energy production, ...) Their functionality depends on the materials science and engineering of compounds

Special Feature

Smartphones and Cloud computing are just two examples of technological advances that make daily life richer and more rewarding. But on the other hand, the world faces many challenges and the survival of humanity, such as global warming and the depletion of energy sources. The world we live in changes day by day, often at breathtaking speed. TDK is heavily engaged in developing technologies aimed not only at making life more enjoyable but also at helping to overcome obstacles and finding new solutions. Making these widely available on a global basis is our contribution to the society of the future.

Promoting Global Change for the Better: TDK

Cloud computing and Smart City are just two examples of technological advances that make daily life richer and more rewarding. But on the other hand, the world faces many challenges and the survival of humanity, such as global warming and the depletion of energy sources. The world we live in changes day by day, often at breathtaking speed. TDK is heavily engaged in developing technologies aimed not only at making life more enjoyable but also at helping to overcome obstacles and finding new solutions. Making these widely available on a global basis is our contribution to the society of the future.

© TDK 2012

Bibliography: Textbooks about technologically relevant magnetic materials
Available at library, eg.

B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials, (2009);
 J.D. Coey, Magnetism and Magnetic Materials (2010).
 R.C. O'Handley, Modern magnetic materials: principles and applications (2000);
 the library provides several copies of the book by
 K. Krishnan, Fundamentals and Applications of Magnetic Materials

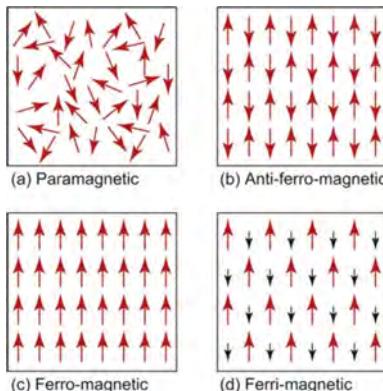
Ressources en bibliothèque

- [Introduction to Magnetic Materials / Cullity](#)
- [Fundamentals and Applications of Magnetic Materials / Krishnan](#)
- [Magnetism and Magnetic Materials / Coey](#)
- [Modern magnetic materials: principles and applications / O'Handley](#)

Contents

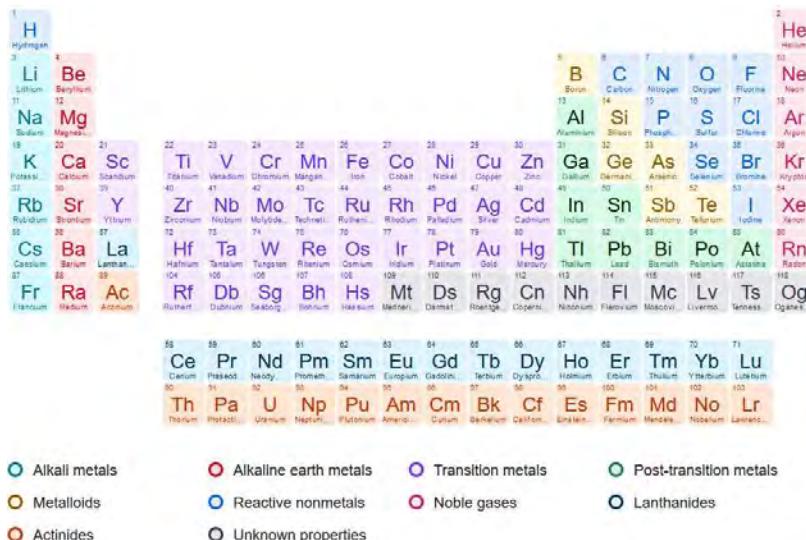
1. Magnetic materials: Review of properties, concepts and magnetic parameters (focussing on hard magnets):
magnetic ordering, critical temperature, elements vs compounds, magnetic hysteresis, figure of merit, demagnetization effect, domain formation
2. Materials science and engineering of a functional magnetic material (hard magnet Nd-Fe-B):
relevant energy terms, magnetic anisotropy, microstructure, characterization/imaging (microscopy)

EPFL


1. Magnetic materials: properties and concepts

EPFL

Types of “magnetic materials”


The following four categories (a) to (d) originate from microscopic magnetic moments existing in the material already at zero magnetic field: (a) field is needed to align moments, (b) to (d) moments undergo ordering due to (symmetric) exchange interaction even at zero magnetic field. (c) and (d) can provide a net magnetization M even at zero field

EPFL

(e) Diamagnetic:
resulting from the orbital motion of electrons in atomic orbitals. The motion is modified by the presence of a magnetic field => the applied magnetic field is partly repelled from the material (diamagnetism)

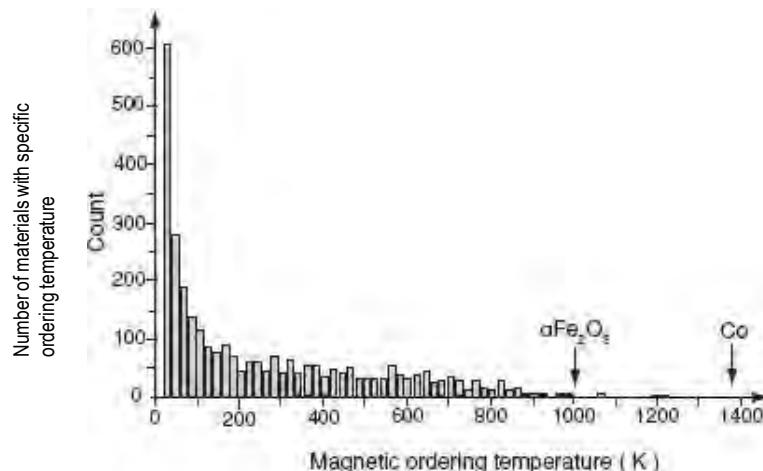
Periodic table of elements

EPFL

<https://www.google.com/search?client=firefox-b-d&q=periodic+table+of+elements>

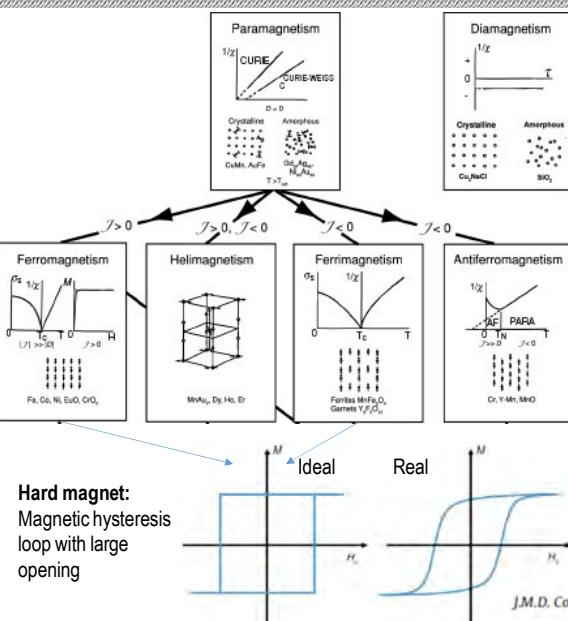
Table A. The magnetic periodic table. Diamagnetic elements are uncoloured, paramagnets are pale grey, ferromagnets are dark grey, antiferromagnets are mid grey, and the Curie or Néel temperatures are marked. Common paramagnetic ions are indicated. Elements which bear a magnetic moment as isolated atoms are marked in bold type.

TABLE 7.1
Magnetic Properties of Iron, Cobalt, and Nickel


	Fe	Co	Ni
Magnetic moment per atom [6] at 0 K (in Bohr magnetons)	2.22	1.72	0.62
Saturation magnetization (in 10^6 A m$^{-1}$)			
(at 0 K)	1.74	1.43	0.52
(at 300 K)	1.71	1.40	0.48
Exchange energy J [3,7]			
(in J)	2.5×10^{-31}	4.5×10^{-21}	2×10^{-21}
(in meV)	0.015	0.03	0.020
Curie temperature [6]			
(in $^{\circ}$ C)	770	1131	358
(in K)	1043	1404	631
Anisotropy energy K_1 [8,9,10,11] (in J m$^{-2}$)			
(at 0 K)	5.7×10^4	68×10^4	-5.7×10^4
(at 300 K)	4.8×10^4	45×10^4	-0.5×10^4
Lattice spacing [12] (in nm)			
A	0.29	0.25	0.35
C		0.41	
Domain-wall thickness [3,4]			
(in nm)	40	15	100
(in lattice parameters)	138	36	285
Domain-wall energy [6,11] (in J m $^{-2}$)	3×10^{-3}	8×10^{-3}	1×10^{-3}

Source: For further details consult the paper by Lilley, B.A., *Phil. Magn.*, 41, 792, 1950.

Note: Domain-wall thicknesses and energies are approximate values only, since they will depend on the crystallographic direction of the moments in the domains on either side of the wall.


Magnetic ordering (critical) temperature

A magnetically ordered state is found below a critical temperature (Curie/Néel temperature):

EPFL

Temperature dependent magnetization/magnetic susceptibility

EPFL

From Fe to Iron Oxides

Bulk Fe is a ferromagnet.

In air, Fe oxidizes. The most common forms are α -Fe₂O₃ (hematite is the mineral) and Fe₃O₄ (magnetite is the mineral). The latter contains iron in oxidation states 2⁺ and 3⁺.

Magnetite (lodestone) is a so-called **ferrimagnet**, which means that microscopic magnetic moments of the Fe ions are aligned antiparallel, thereby reducing the saturation magnetization $\mu_0 M_s$ of the bulk material below the value of iron (which is about 2.15 T at room temperature).

Iron crystal:
 $\mu_0 M_s = 2.15$ T
ferromagnetic

Hematite:
canted antiferromagnetic
 phase

Magnetite (lodestone):
 $\mu_0 M_s = 0.56$ T
ferrimagnetic

None of these single or poly-crystals are used in high-end technical applications based on hard magnets. Why?

EPFL

Permanent (hard) magnets: Optimization of coercive field and energy product

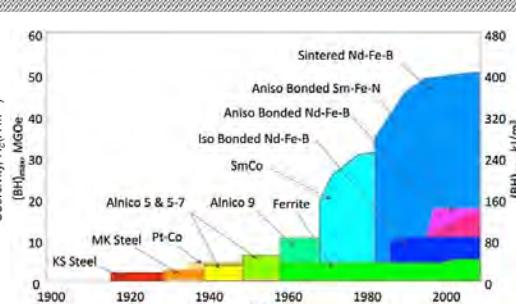
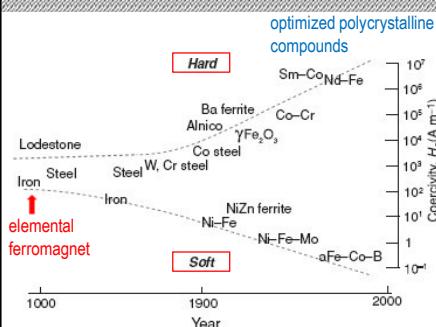
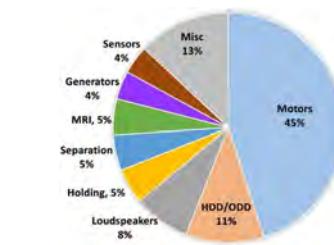
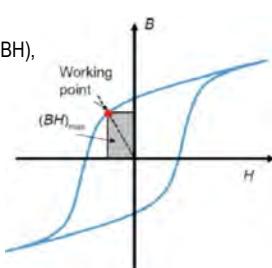
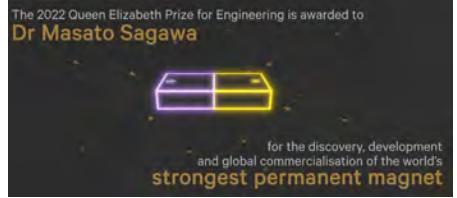





Figure of merit:
 max. energy product (BH),
 via large coercive
 field and remanent
 magnetization

Applications of permanent magnets
 by market (\$ share in 2019).

<https://link.springer.com/article/10.1007/s11837-022-05156-9>


EPFL

Queen Elizabeth Prize for Engineering honours magnet pioneer (01. Feb. 2022)

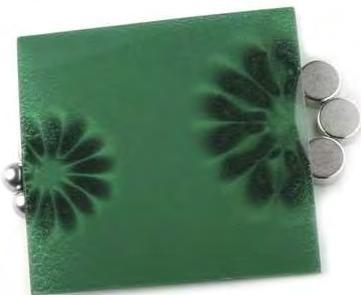
Permanent magnet technology: NdFeB

NdFeB permanent magnets are used in mobile phones: in the speakers, vibration mechanism and camera auto-focus.

Dr Masato Sagawa

<https://qeprize.org/>

EPFL


Permanent magnets provide large magnetic fields

The Flux Detector makes magnetic fields visible.

It's accomplished by a foil filled with nickel particles in a gelatinous suspension.

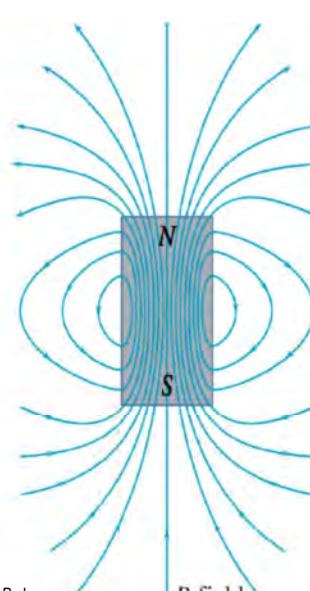
The Flux Detector turns

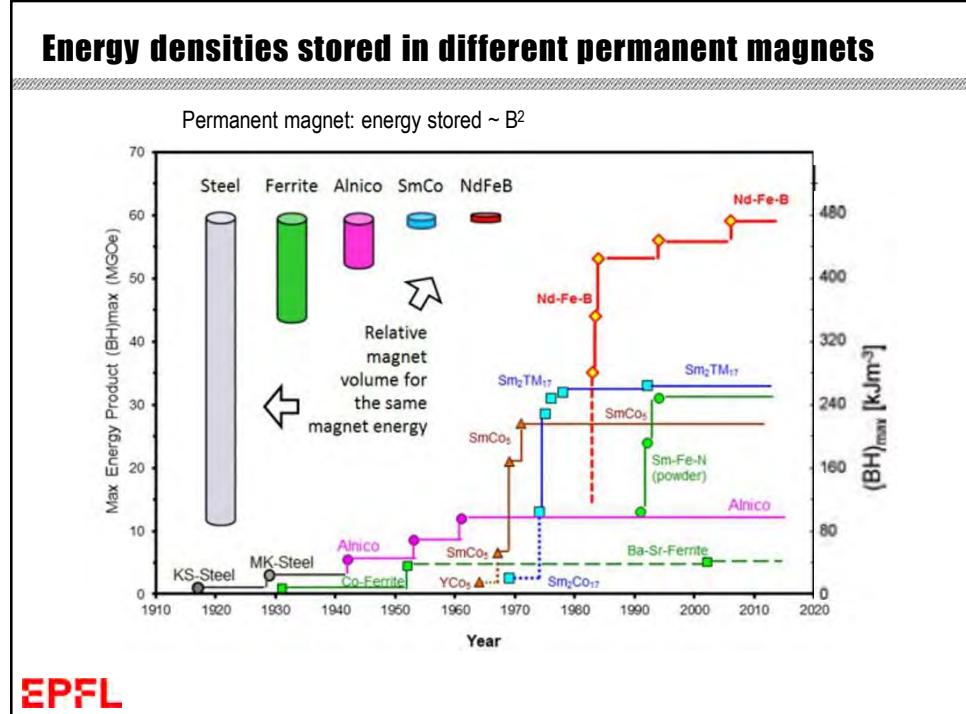
- dark in color when the magnetic field is perpendicular to the foil (for example, near the poles) and
- lighter when the magnetic field runs parallel to the foil.

EPFL

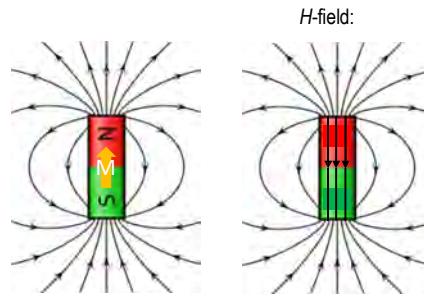
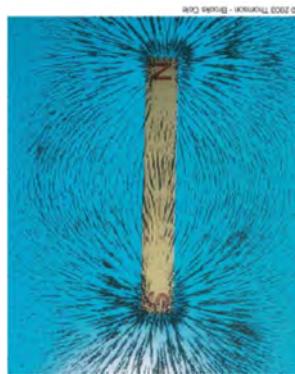
Magnetic field B

The lines of the magnetic field:


- ▶ Never intersect
- ▶ Have **neither sources or sinks**, unlike electrical and gravitational fields. Therefore, a magnetic field always forms a **closed loop**.
 $\vec{V} \cdot \vec{B} = 0$


One distinguishes two magnetic fields B and H .
For
 $\vec{B} = \gamma \mu_0 \vec{H} = \mu_0 (\vec{H} + \vec{M})$,
the field lines are closed

The density of the magnetic field lines is proportional to the magnitude of the field.



Field lines of field B close as required by **Maxwell's equations**.
Field lines of field H do not follow this restriction.

© 2001 Brooks/Cole Publishing/TP

Field lines of H -field

Here we sketch the field lines of H .
They do not form closed loops:

$$\vec{\nabla} \cdot \vec{B} = 0$$

$$\Rightarrow \vec{\nabla} \cdot (\vec{H} + \vec{M}) = 0$$

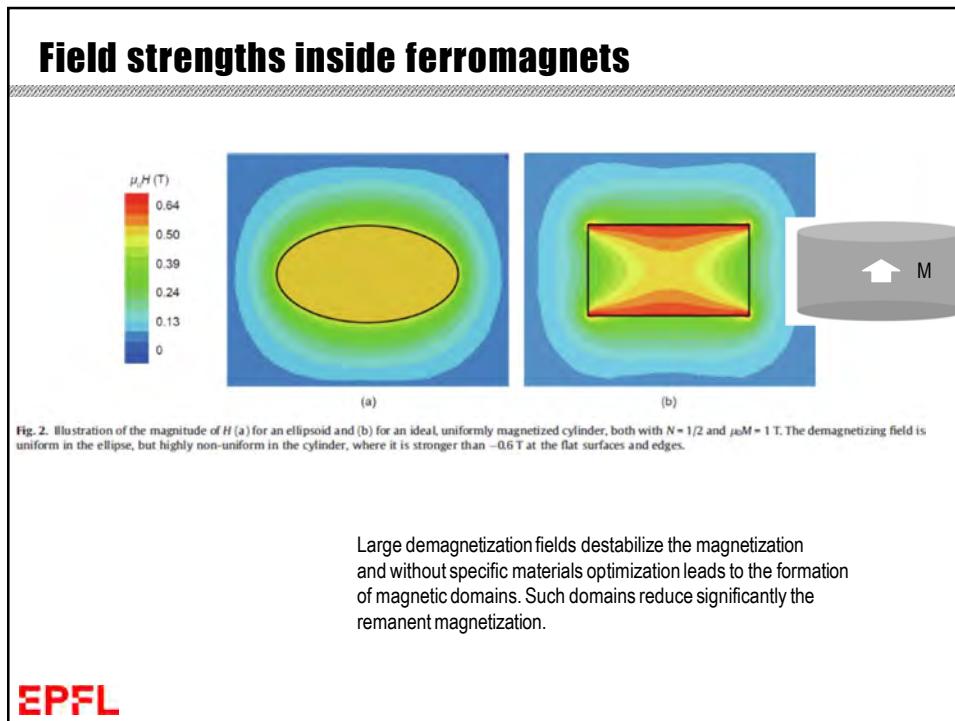
$\Rightarrow \vec{\nabla} \cdot \vec{H} = -\vec{\nabla} \cdot \vec{M}$ The field H is
not divergence-free.

One distinguishes two magnetic fields B and H .

For

$$\vec{B} = \mu_0 \vec{H} = \mu_0 (\vec{H} + \vec{M}),$$

the field lines are closed


EPFL

In magnetism two main unit systems coexist: CGS and SI. In the lecture we will use mainly the SI system.

Table 1.6.1 Key relationships and conversions between SI and CGS units in magnetism.

CGS	SI	Conversions
Magnetic field [H]	[Oersted]	[A/m]
Magnetic inductance [B]	[Gauss]	[Tesla] = [Weber/m ²] = [V s m ⁻²]
Pole strength [p]	[dynes/Oe]	[A m]
Magnetic moment [m]	[ergs/Oe] = emu	[A m ²]
Magnetization [M]	emu/cm ³	[A/m]
Permeability of free space	1	$\mu_0 = 4\pi \times 10^{-7} [\text{Wb A}^{-1} \text{m}^{-1}] = [\text{H m}^{-1}]$
Field of a straight wire carrying current i [A] at a distance, r	$H = \frac{2i}{10r}$ (Oe)	$H = \frac{i}{2\pi r}$ [A/m]
Relationship between M, H, and B	$B = H + 4\pi M$	$B = \mu_0 (H + M)$
Torque on a moment, m	$\tau = m \otimes H$	$\tau = m \otimes B$
Potential energy of m	$E_{\text{pot}} = -m \cdot H$ [erg]	$E_{\text{pot}} = -m \cdot B$ [J]
		$1 \text{ J} = 10^7 \text{ ergs}$

Taken from Kannan Krishnan
(Fundamentals and Applications
of Magnetic Materials)

Examples of different kinds of domains depending on magnetic anisotropies

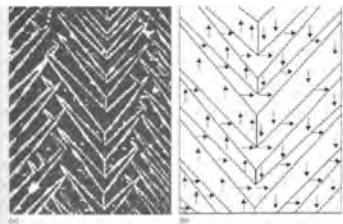
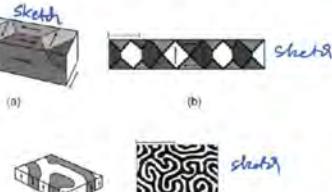
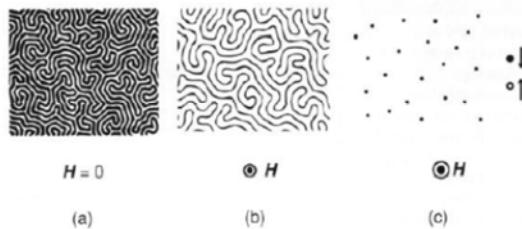



FIGURE 7.16 (a) Magnetic domains in the surface of iron observed using the Brill method magnetization in 1770. (b) Interpretation of domain patterns in (a) showing the existence of perpendicular magnetocrystalline anisotropy. (Data from Williamson, O. J. et al., *Phys. Rev.* 23, 335, 1961.)

Examples of domains depending on sample thickness and type of anisotropy:


Sketch 1
Domain structure in (a) a bar and (b) a thin film of a cubic material. (c) more domains in a thin film of a uniaxial material with strong perpendicular anisotropy. The shading in (c) shows the region of magnetostatic stress. The scale bar represents 100 μm .

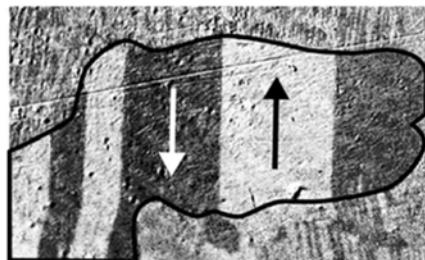

J.M.D. Coey

Figure 7.17

Magnetization and domain structure of a thin film with perpendicular anisotropy. Maze domains give way to bubble domains on increasing magnetic field.

How to avoid domain formation after saturation?

http://mriquestions.com/uploads/3/4/5/7/34572113/2618271_orig.gif

Here domains are detected by magneto optical Kerr effect.
See lecture by Dr. Phoebe Tengdin

EPFL

2. Materials optimization and characterization

In the following we discuss aspects of the optimization of a functional magnetic material by considering the hard (permanent) magnet.

EPFL

Landau-Lifshitz-Gilbert equation

Contributions in total energy, e.g.:

$$\vec{H}_{\text{eff}} = -\frac{1}{V} \frac{dE_{\text{tot}}}{d\vec{M}}$$

$$\frac{d\vec{M}}{dt} = -\gamma(\vec{M} \times \mu_0 \vec{H}) + \frac{\alpha}{|M_0|}(\vec{M} \times \frac{d\vec{M}}{dt})$$

Equilibrium condition:

$$\vec{M} \times \vec{H}_{\text{eff}} = 0$$

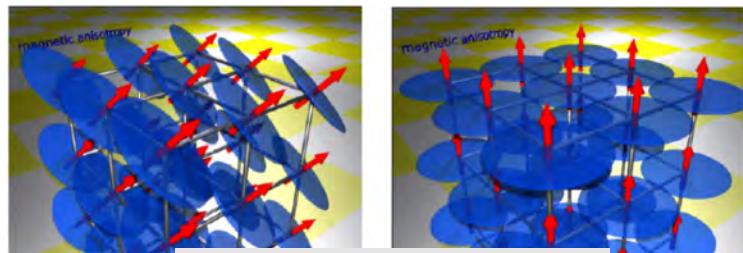
If there is a misalignment angle, a torque exists:
 \Rightarrow precession of magnetization vector, and relaxation (second term) towards the effective field

Zeeman energy $E_z = -\mu_0 \int_V \mathbf{H}_{\text{ext}} \mathbf{M} dV$

Demagnetization field energy $E_d = -\frac{\mu_0}{2} \int_V \mathbf{H}_d \mathbf{M} dV$

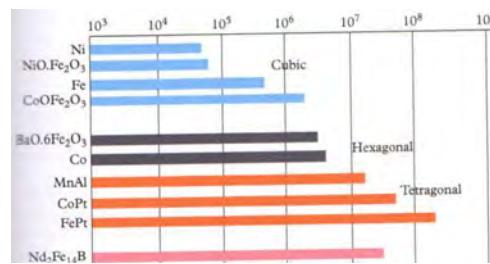
Magnetic anisotropy energy (MAE) $e_a = K_u \sin^2 \theta$

Exchange energy $E_{\text{exch}} = \int A_{\text{exch}} (\nabla \mathbf{e}_M)^2 dV$
 where $\mathbf{e}_M = \mathbf{M}(r)/M_s$


Helices, magnetic skyrmions result from e.g. antisymmetric exchange interaction (Dzyaloshinskii-Moriya interaction; here, bulk inversion asymmetry assumed):

$$E_{\text{DM},\alpha} = \int [\alpha \vec{M} \times (\vec{\nabla} \times \vec{M})] d\alpha$$

EPFL


Origin of magnetocrystalline anisotropy

Effect of spin-orbit coupling: change of orbital functions when rotating M

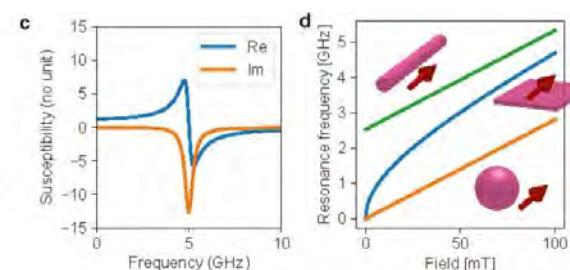
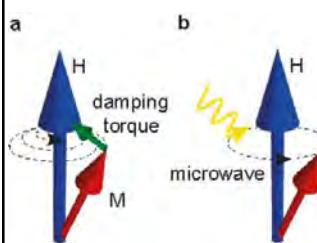
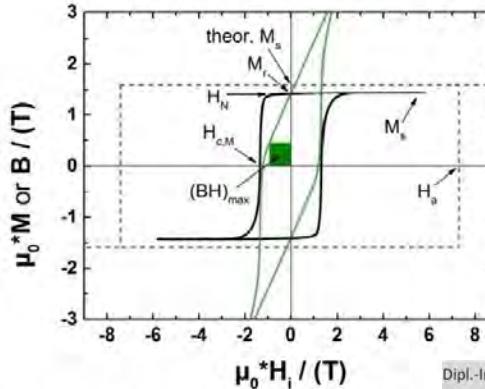


The MAE reflects the symmetry of the crystal.
A tetragonal crystal experiences a uniaxial anisotropy.

Figure 6.6.1 Absolute values of the anisotropy constants, K (ergs/cm 3), at room temperature. (Note, 1 J/m 3 = 10 ergs/cm 3) Courtesy, Dr. R.E.C. Farrow,

EPFL

How to test effective fields? Resonant spin precession

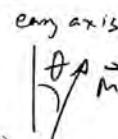

See lecture by Dr. Ping Che

EPFL

S. Watanabe, 2021 (PhD thesis)

Optimization of energy product via large MAE

Ideal coercive field in a finite sample: $H_c \geq \left(\frac{2K_1}{\mu_0 M_s} \right) - \mathcal{N} M_s$



Dipl.-Ing. Konrad Löwe aus Stralsund

Figure 2-2: Comparison of an experimental hysteresis loop $\mu_0^* M(H)$ (full black line) of a sintered Nd-Fe-B magnet with the theoretical hysteresis loop (black dashed line) after equation 2-7. Also shown is $B(H)$ (full green line). The values for the theoretical M_s and H_a can be found in Table 2-1. H_a ... anisotropy field, M_r ... remanence, M_s ... saturation magnetization, H_N ... nucleation field, $H_{c,M}$... coercivity of the $M(H)$ curve, $(BH)_{\max}$... maximum energy product.

How to explain the maximum coercive field?

$$E_{\text{tot}} = E_{\text{ani}}(\theta, \varphi) + E_{\text{Zeeman}} = E_{\text{ani}}(\theta, \varphi) - \mu_0 \vec{M} \cdot \vec{H}_{\text{ext}}$$

For uniaxial anisotropy assume: $E_{\text{ani}}(\theta, \varphi) = K_1^u \sin(\theta)$

The anisotropy comes with an anisotropy field (see previous chapter): $H_{\text{ani}} = \frac{2K_1^u}{\mu_0 M_s}$

Using $K_1^u = 8.2 \cdot 10^5 \frac{1}{\text{m}^3}$ for Co, one gets $\mu_0 H_{\text{ani}} = 0.58 \text{ T}$

When the external field reaches 0.58 T and is applied either exactly parallel to the easy axis or exactly perpendicular to the hard axis, the anisotropy field is balanced. For any larger field the magnetization vector then follows the field direction.

Intrinsic magnetic properties

J.M.D. Coey / Engineering 6 (2020) 119–131

127

Table 2
Intrinsic magnetic properties of some permanent magnet phases.

Compound	T_C (K)	μ_0M_s (T)	$-K_1$ (MJ m $^{-3}$)	κ	$(BH)_{MAX}$ (kJ m $^{-3}$)
Nd ₂ Fe ₁₄ B	588	1.61 M (MA m $^{-1}$)	4.3	1.54	516

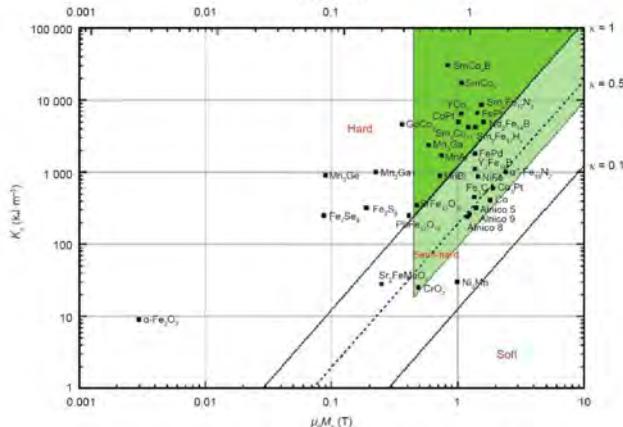


Fig. 7. Plots of anisotropy D_{eff} as a function of polarization μ/μ_0 for many magnetic materials with uniaxial anisotropy. The anisotropy of the Alnico is intrinsic semi-anisotropy. Solid and dotted lines correspond to $k = 1, 0.5$, and 0.1 . Hard materials in the bright green area can be used to make efficient magnets of any shape. Semi-hard materials in the pale green area can be used to make oriented magnets with a shape-limited energy product. Reproduced from Ref. [2] with permission of Elsevier B.V. © 2015.

Solution to domain formation

Functional magnetic materials originate from materials science and engineering with materials having optimized composition and microstructure

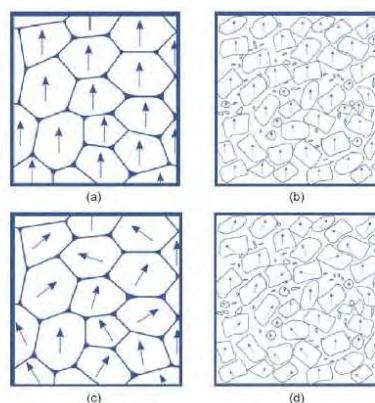
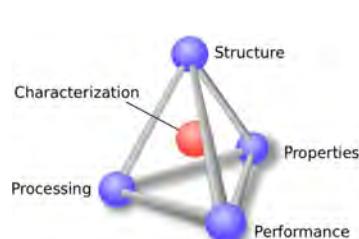
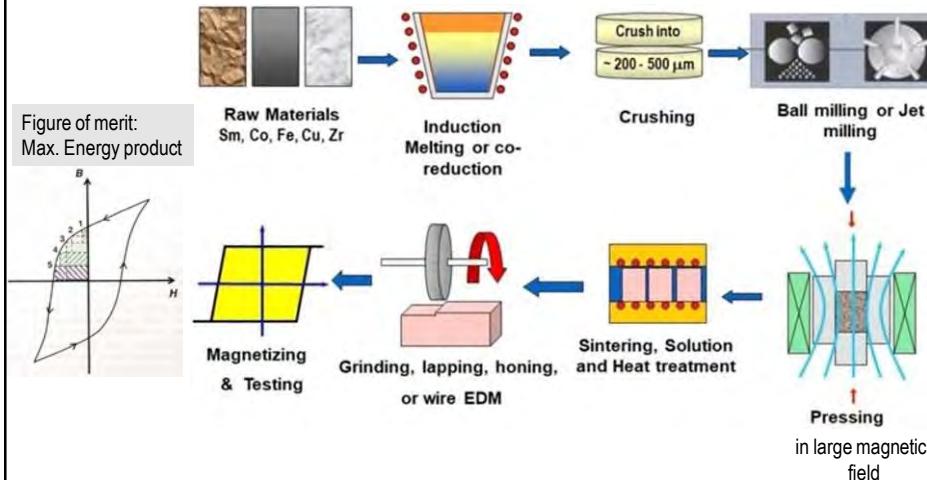




Fig. 3. Possible forms of rare earth permanent magnets. (a) Oriented, sintered magnet; (b) oriented, bonded magnet; (c) random, sintered magnet; (d) random, bonded magnet.

Production of rare earth permanent magnets

EPFL

Relevant temperatures while processing

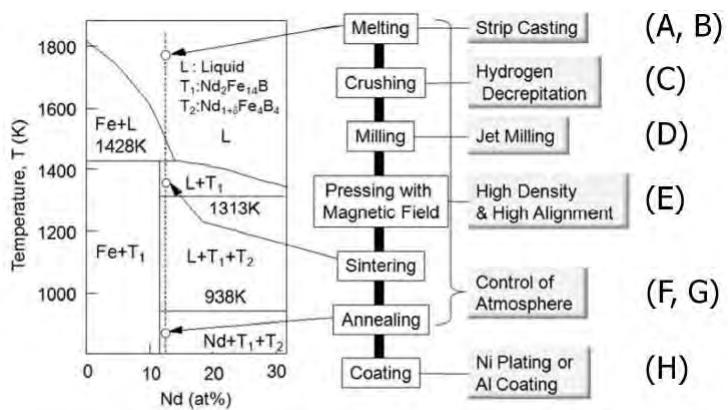


Figure 2-4: Production route of NdFeB sintered permanent magnets [Sugimoto2011]

PhD thesis, TU Darmstadt

Dipl.-Ing. Konrad Löwe aus Stralsund

EPFL

Tetragonal phase of $\text{Nd}_2\text{Fe}_{14}\text{B}$ in the grains

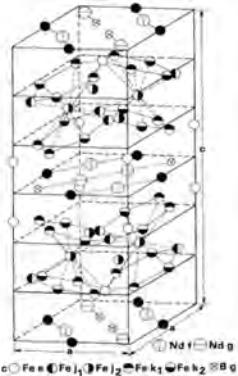
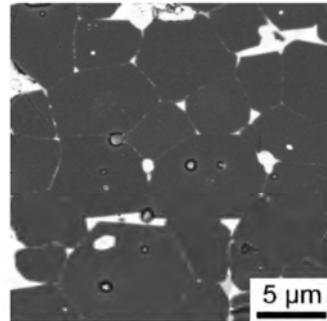
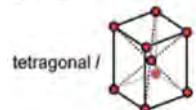




Figure 2-1: Crystal structure of Nd-Fe-B (Herbst 1991).

Figure 1: Backscattered electron image showing the typical microstructure of a Nd-Fe-B sintered magnet. Brighter regions correspond to Nd-rich phases and the large, darker grains are $\text{Nd}_2\text{Fe}_{14}\text{B}$.

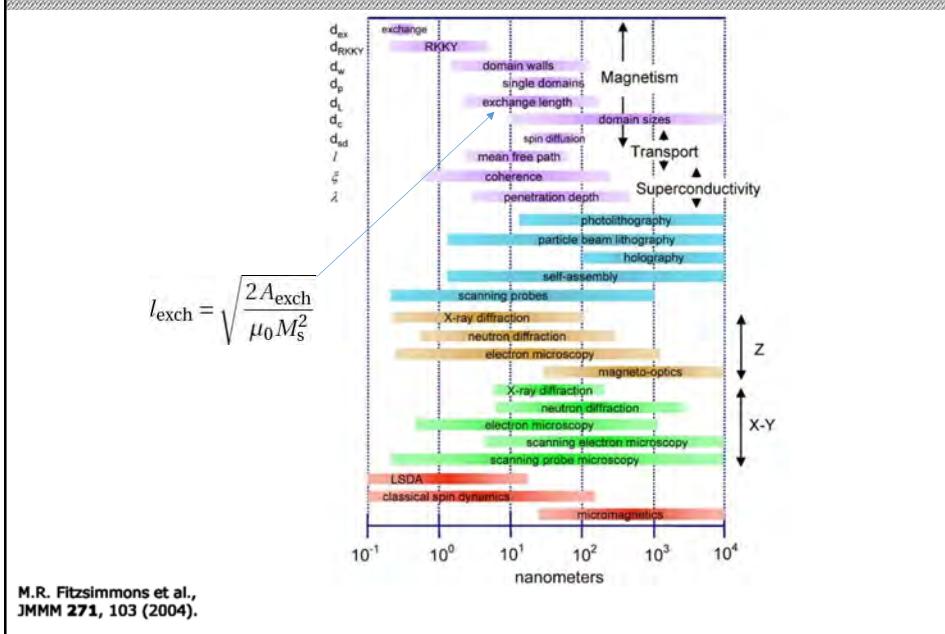
EPFL

The large content of Fe ensures a large saturation/remanent magnetization.

PhD thesis, TU Darmstadt

Dipl.-Ing. Konrad Löwe aus Stralsund

Table 13.3. Properties of commercial oriented magnets


	$\mu_0 M_r$ (T)	J_s (T)	iH_c (kA m ⁻¹)	BH_c (kA m ⁻¹)	$(BH)_{max}$ (kJ m ⁻³)	$\mu_0 M_r^2/4$ (kJ m ⁻³)
$\text{SrFe}_{12}\text{O}_{19}$	0.42	0.47	275	265	34	35
Alnico 5	1.25	1.40	54	52	43	310
SmCo_5	0.88	0.95	1700	700	150	154
$\text{Sm}_2\text{Co}_{17}^a$	1.08	1.15	1100	800	220	232
$\text{Nd}_2\text{Fe}_{14}\text{B}$	1.28	1.54	1000	900	350	326

^a Intergrown with 1:5 phase

Fig. 5 Neodymium-iron-boron applications

Computers and office automation	Appliances
disk drives and voice coil motors	portable power tool motors
printer and fax stepper motors	household appliance motors
printer hammer	scales
copy machine rollers	
CD drive spindle and pickup motors	
Automotive	Factory automation and industrial
permanent magnet starter motors	robot motors
sensors	robot arms
electric fuel pumps	magnetic couplings
instrumentation gauges	pumps
brushless dc motors	servo motors
actuators	bearings
	generators (especially portable)
Consumer electronics/communications	Medical/health
VCRs and camcorders	MRI
DVD	surgical tools
cameras	water purifiers
watches	
speakers	
headsets	
microphones	
pages	
mobile phones	
	Security/safety
	sensors
	illumination

Relevant length scales for magnetic materials optimization

Domain imaging on NdFeB versus grain imaging

Table 2-2: Micromagnetic parameters and characteristic length scales for Nd₂Fe₁₄B [Coy2010]. exchange stiffness A, anisotropy constant K₁, exchange length l_{ex}, domain wall width δ_W, domain wall energy γ_W.

A [pJ/m]	K ₁ [MJ/m ³]	l _{ex} [nm]	δ _W [nm]	γ _W [mJ/m ²]
8.0	4.9	1.9	3.9	25

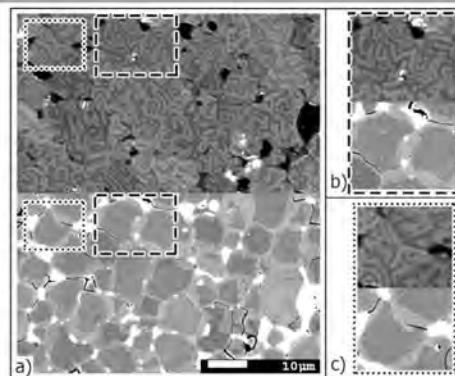
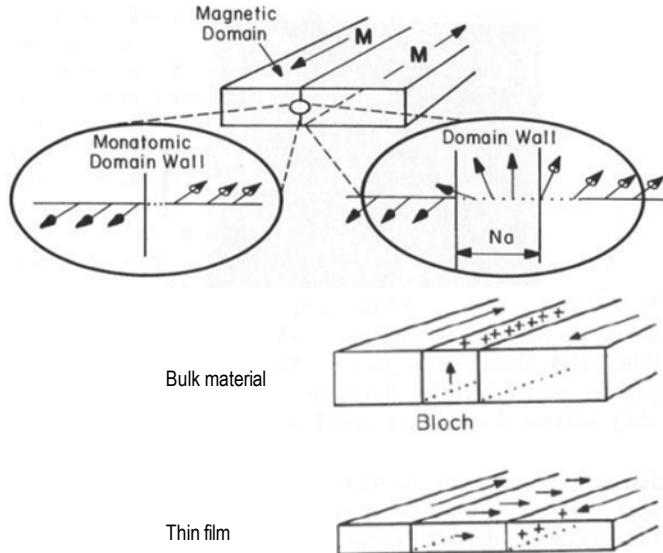



Figure 4-7: Microstructure of a Dy coated magnet after annealing at 900 °C for 6 h. a) Correlation between magneto-optical Kerr (top) and SEM BSE (below) contrast. The respective images show the exact same region of the sample. The easy axis of the material is pointing out-of-plane and the Kerr image is showing polar contrast. b) and c) show magnified views from a).

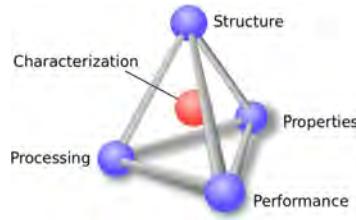
Internal spin structures of domain walls

EPFL

Néel

Imaging techniques

Table 1. Comparison of magnetic imaging techniques, presenting some of the key specifications and attributes. The quoted values are in general typical achievable values.*Proof of concept recently demonstrated [42, 43, 121].


Technique	Probed Quantity	Spatial Resolution	Temporal Resolution	Info. Depth	Comments
Lorentz Microscopy	stray field + sample induction	10 nm	1 ns	sample average	Thin samples, Quantitative info. with differential phase contrast microscopy.
Electron Holography	stray field + sample induction	5 nm	10 ms	sample average	Quantitative info. through mathematical image reconstruction.
SEMPA	magnetization	20 nm	700 ps*	1 nm	Quantitative info. Long acquisitions, UHV required.
SP-STM	magnetization	atomic	120 ps*	surface	UHV required. Usually low temperature, Long acquisitions.
MFM	stray field	10-100 nm	low	1000 nm	Potentially invasive, Long acquisitions, Few sample requirements.
TXM	magnetization	25 nm	50 ps	sample average	Synchrotron technique, Quick overview images.
STXM	magnetization	25 nm	50 ps	sample average	Synchrotron technique, High repetition rates.
PEEM	magnetization	25 nm	50 ps	5 nm	Synchrotron technique, Discharges possible due to high potential, Zero drift.
CDI	magnetization	40 nm	fs-ps	sample average	Synchrotron technique, Complex sample fabrication & image reconstruction.
MRI	proton density & environment	1-2 mm	100 ms-several sec.	3D imaging	Low risk, Very versatile.
MEG	stray field	5 mm	<1 ms	3D imaging via modelling	No unique solution, Risk free.

<https://arxiv.org/abs/1806.07767>

EPFL

Summary

Functional magnetic materials originate from materials science and engineering with materials having optimized composition and microstructure

The optimization is a multiscale problem involving scales ranging from the **atomic scale** (exchange interaction) and **nm scale** (domain wall widths) via the **micronscale** (magnetic domains, grains) to the **mm scale** (demagnetization effect, shape, processing/machining).

Advanced magnetic imaging (microscopy) is key to optimize the functionality of magnetic materials and unravel the fundamentals of spin structure formation ("intended ones like magnetic skyrmions and unintended ones, i.e., domain walls in permanent magnets").

EPFL

STATIC AND DYNAMIC MAGNETIC IMAGING USING X-RAY BASED TECHNIQUES

Victor Ukleev

Spin and Topology in Quantum Materials

Helmholtz-Zentrum Berlin für Materialen und Energie, Germany

Advanced Microscopy techniques for characterizing the
magnetic properties of materials

EPFL
Switzerland
16.11.2022

OVERVIEW

- Introduction:

- x-ray absorption and x-ray magnetic dichroism
- resonant x-ray absorption and scattering
- polarized x-ray sources and beamline optics

- Classic x-ray magnetic imaging techniques

- Photoemission electron microscopy (PEEM)
- Transmission x-ray microscopy

- State-of-the-art techniques

- Coherent x-ray diffraction imaging and holography
- Three-dimensional x-ray imaging
- Time-resolved magnetic x-ray imaging with synchrotrons and free-electron lasers

- Summary

INTRODUCTION

- L -edges of transition metals: probes valence states and magnetism
- Peak corresponds to transition from core level to valence band
- Soft x-rays: ~ 100 eV ... ~ 2 keV
- Due to the symmetry of the transition operator we obtain the dipole selection rules: $\Delta s=0$ $\Delta l=\pm 1 \rightarrow$ orbital and spin moment selectivity

Virtual transitions between 2p and 3d states

Normalized Electron Yield

Mn L edge

Sensitivity to magnetism

IEEE Trans. on Magn. 2015, 51, 2

<https://www.ssrl.slac.stanford.edu/stohr/>

J. Phys. Chem. A 2003, 107, 16, 2839-2847

INTRODUCTION

X-ray Circular Magnetic Dichroism (XMCD)

Theoretical prediction -> 1975

PHYSICAL REVIEW B
VOLUME 12, NUMBER 11
1 DECEMBER 1975

Calculation of the M_{11} magneto-optical absorption spectrum of ferromagnetic nickel

J. L. Erskine*

Department of Physics, University of Illinois, Urbana, Illinois 61801

E. A. Stern¹

Department of Physics, University of Washington, Seattle, Washington 98195
(Received 28 April 1975)

Experimental observation -> 1987

PHYSICAL REVIEW LETTERS
VOLUME 58, NUMBER 7
16 FEBRUARY 1987

Absorption of Circularly Polarized X Rays in Iron

G. Schütz, W. Wagner, W. Wilhelm, and P. Kienle^{1,2}

Physik Department, Technische Universität München, D-8046 Garching, West Germany

R. Zeller

Institut für Festkörperforschung der Kernforschungsanlage Jülich, D-5177 Jülich, West Germany

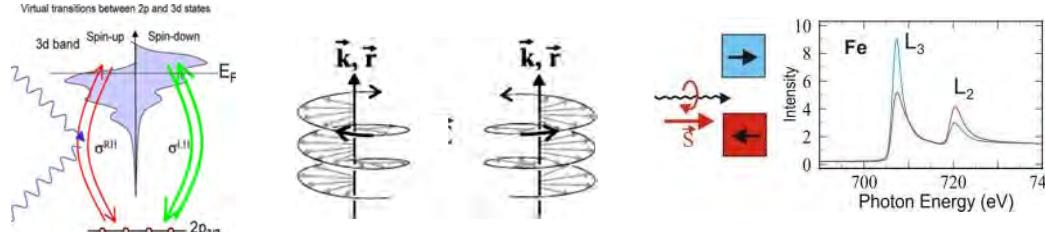
R. Fröhlich and G. Münker

Hamburger Synchrotronstrahlungslabor am Deutschen Elektronen-Synchrotron DESY, D-2000 Hamburg 52, West Germany
(Received 22 September 1986)

Polarization-dependent absorption of circularly polarized x-rays
by magnetic materials (magnetic atoms)

-
-
-

Element-specific magnetic contrast
Spin and orbital moment selectivity
Very high sensitivity


- X-ray techniques can be transferred into its magnetic counterpart, by tuning the x-ray energy to a corresponding XMCD sensitive edge: microscopy, spectroscopy, diffraction, reflectometry, small-angle scattering, etc.

2

X-ray magnetic circular dichroism (XMCD)

INTRODUCTION

Circular dichroism - a tool to study ferro(ferri)magnets

Virtual transitions between 2p and 3d states

3d band Spin-up Spin-down E_F

σ^{RR} σ^{LL}

$2p_{3/2}$ $2p_{1/2}$

\vec{k}, \vec{r}

\vec{k}, \vec{r}

\vec{S}

Intensity

Fe L_3 L_2

Photon Energy (eV)

a) Fe L_3 circ. left

250nm

b) Fe L_3 circ. right

250nm

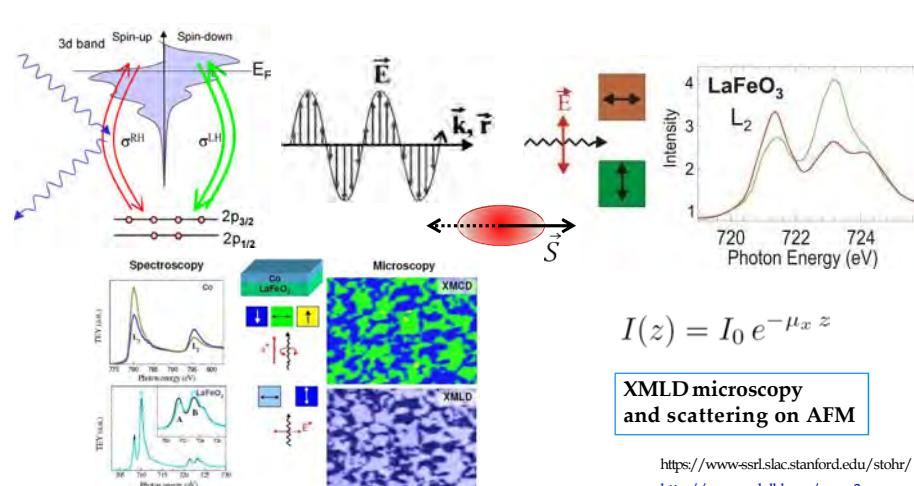
c) Fe L_3 left/right

250nm

$I(z) = I_0 e^{-\mu_x z}$

where μ is material-specific coefficient dependent on photon energy

XMCD microscopy and scattering


IEEE Trans. on Magn. 2015, 51, 2 <https://www-ssrl.slac.stanford.edu/stohr/>

X-ray magnetic linear dichroism (XMLD)

INTRODUCTION

Linear dichroism - a tool to study antiferromagnets

- XMLD is sensitive to the antiferromagnetic order: spin orbit coupling breaks spherical symmetry of the charge density
- XMLD is quadratic to magnetization
- Similarly to XMCD allows to employ magnetic and element-selective imaging

3d band Spin-up Spin-down E_F

σ^{RR} σ^{LL}

$2p_{3/2}$ $2p_{1/2}$

\vec{k}, \vec{r}

\vec{E}

\vec{S}

Intensity

LaFeO₃ L_2

Photon Energy (eV)

$I(z) = I_0 e^{-\mu_x z}$

XMLD microscopy and scattering on AFM

<https://www-ssrl.slac.stanford.edu/stohr/>

<http://xrayweb.lbl.gov/peem2>

X-ray resonant magnetic scattering (XRMS)

INTRODUCTION

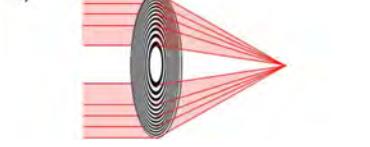
- Same transition is used to observe resonant scattering and diffraction: $L_{2,3}$ edges of TM correspond to soft x-rays in the energy range of 480 – 950 eV, $\lambda \sim 15\text{-}20 \text{ \AA}$
- Resonant x-rays allow both reciprocal (scattering) and real-space (imaging)

Polarized synchrotron x-rays

INTRODUCTION

Polarised synchrotron radiation by bending magnets and insertion devices (IDs)

X-ray optics


INTRODUCTION

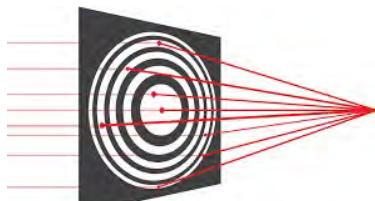
A)

(A) Kirkpatrick–Baez (KB) mirror system
Diffraction, spectroscopy, etc.

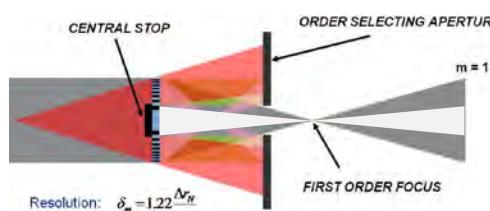
B)

(B) compound refractive lenses (CRL)
High energy x-rays

C)


(C) Fresnel zone-plates (FZP)
Microscopy, nano-spectroscopy

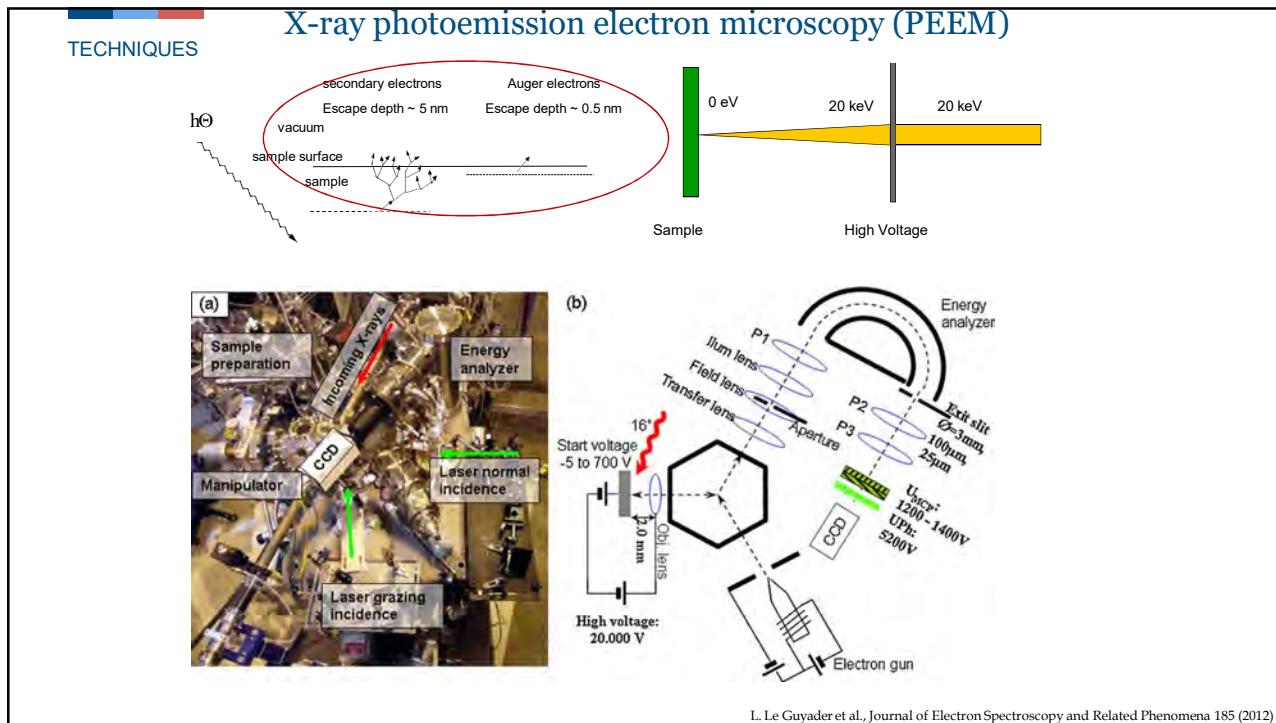
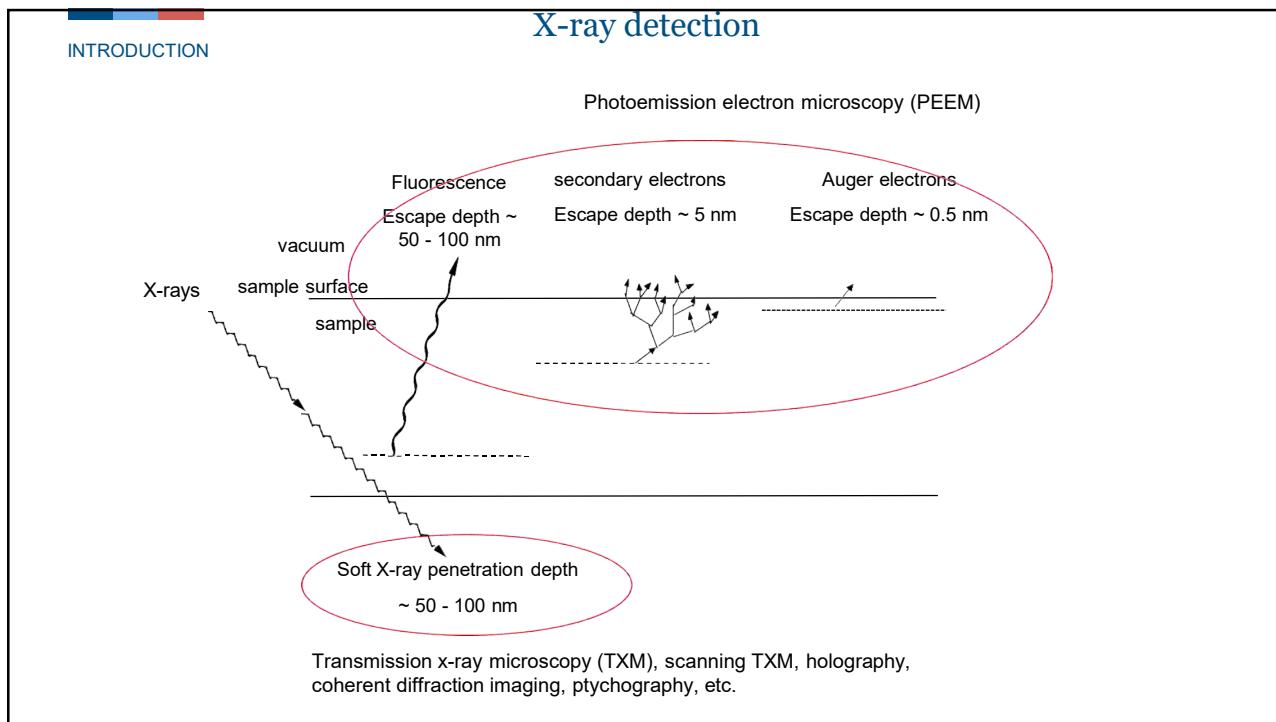
X-ray Optics	CRLs	Fresnel ZP	KB Mirrors
ZP-equivalent Numerical Aperture (based on outermost zone, smaller is better)	10 nm	30 nm	16 nm
Achievable Focus Resolution (Theoretical Value / Best Possible)	Very High (3 μm / 100 nm)	Very High (200 nm / 10 nm)	Very High (1 μm / 20 nm)
Handling/Ease of Alignment (Compact)	✓	✓	✗
Achromatic	✗	✗	✓
Working Distance Range Selection	5 mm – 10's m	1 mm – 30 mm	10 cm – 10's m
Efficiency	~5%	~10%	~75%
In-line with Beam	✓	✓	✗
Price (Including beamline costs & motion control systems)	Depends	High	Mid to High (long beamline & stability needed)

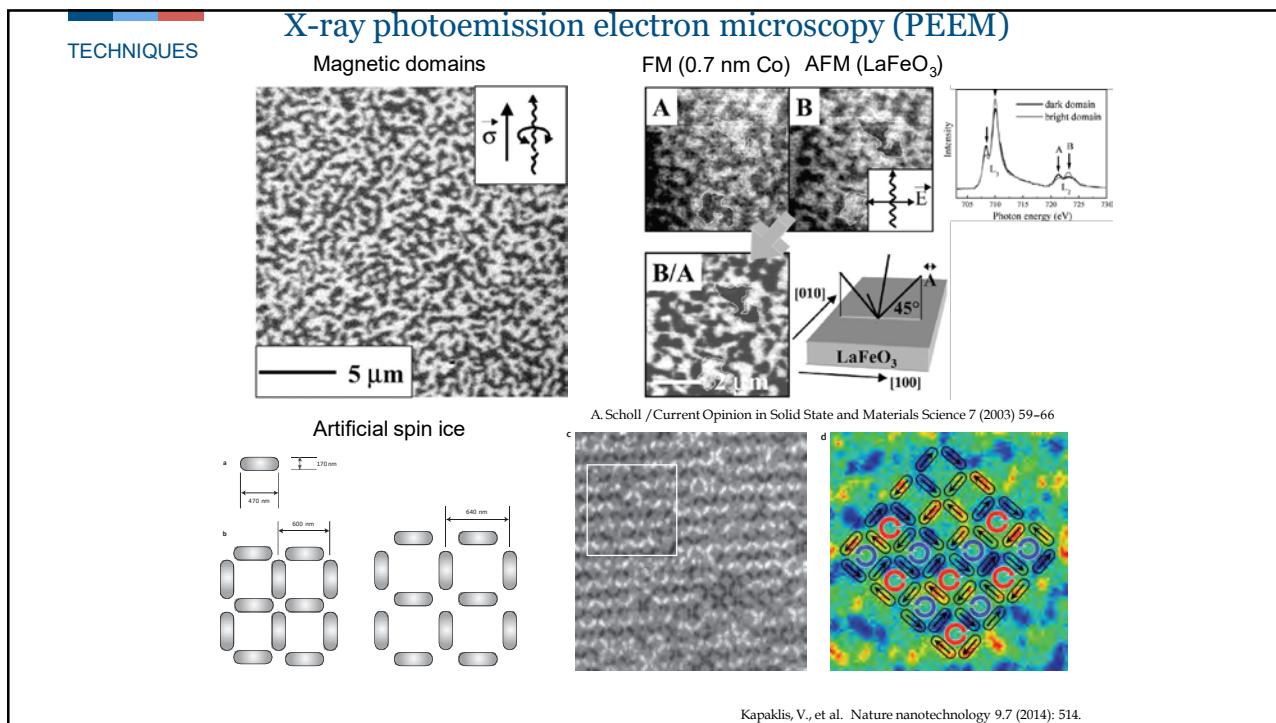
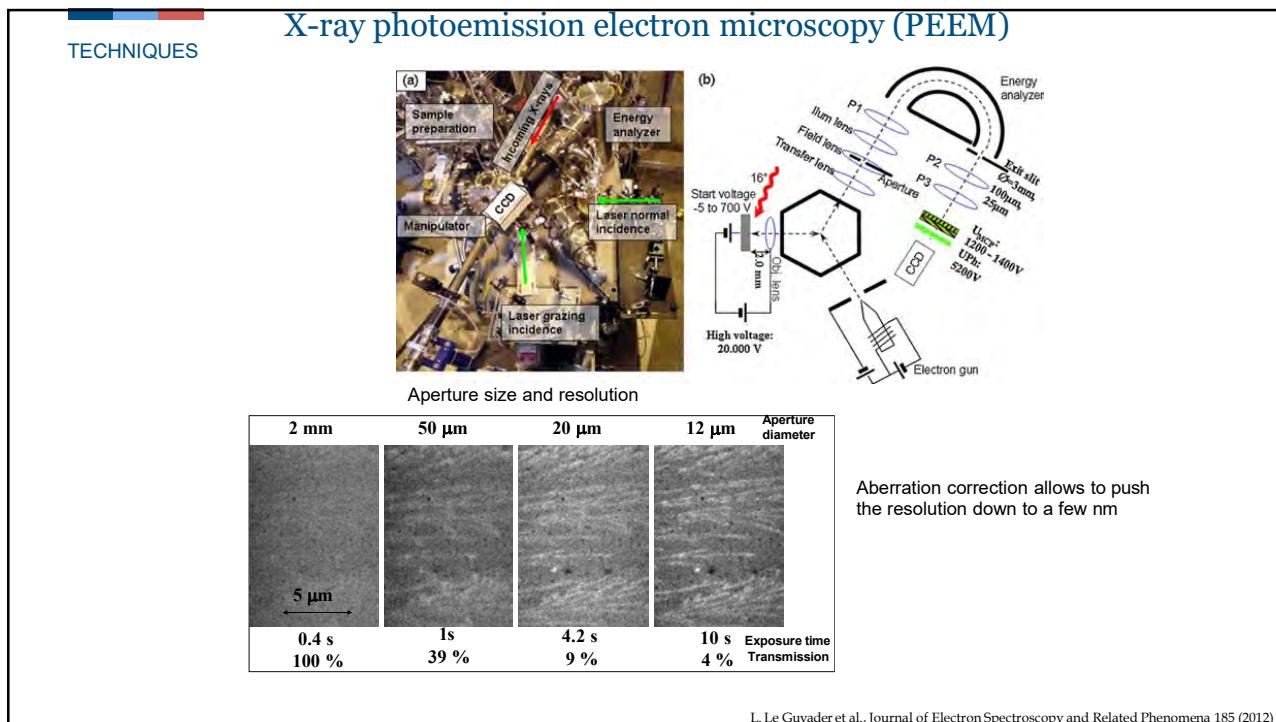

Cotte, M., et al., Comptes Rendus Physique 19.7 (2018): 575-588
<https://www.sigray.com/>

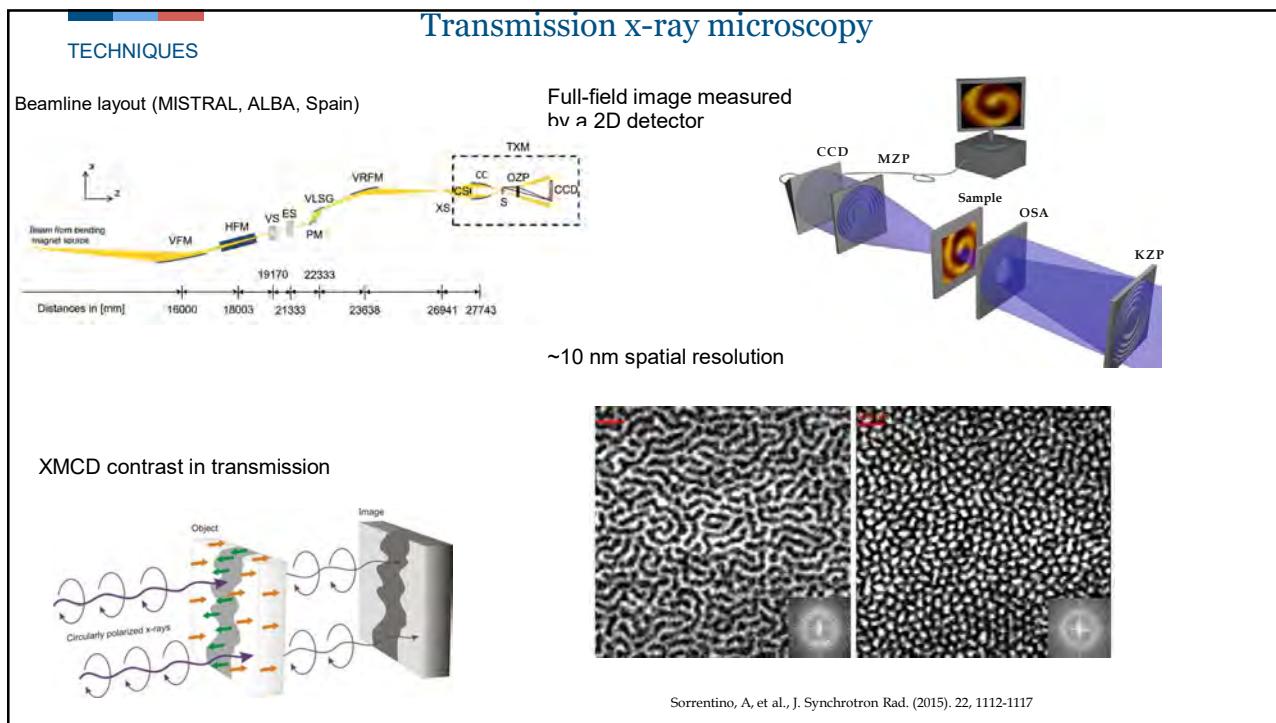
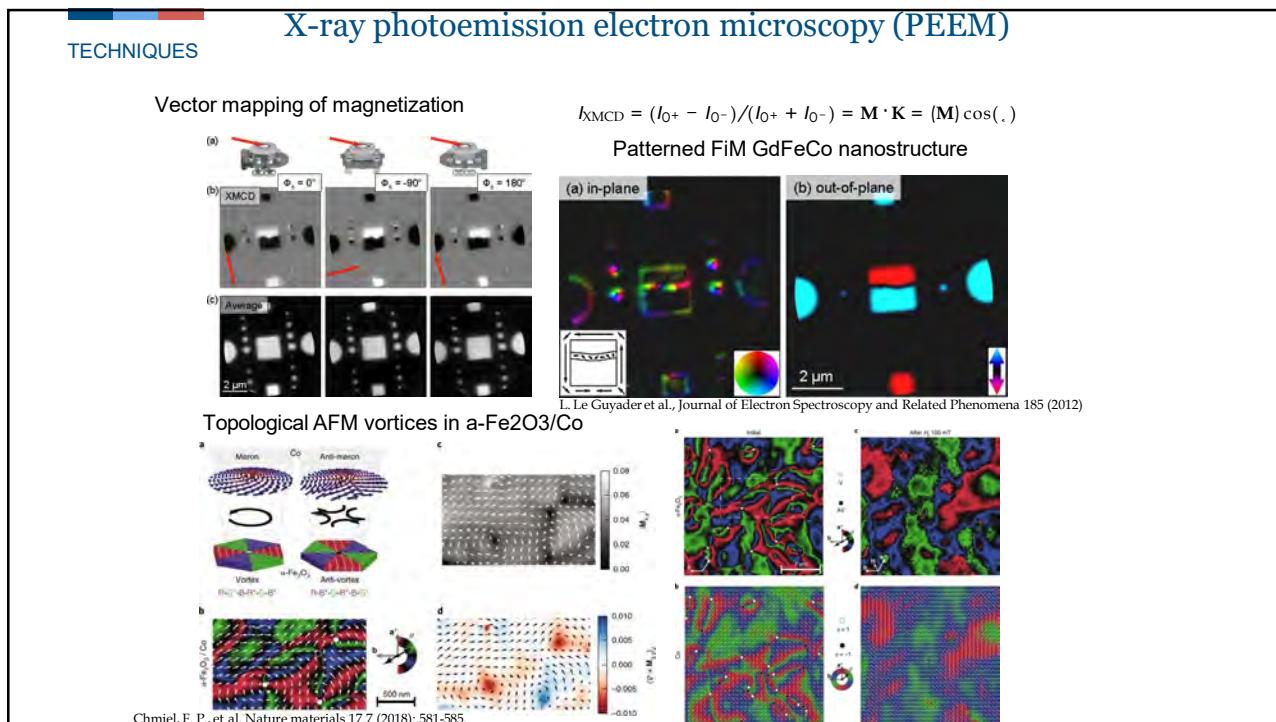
X-ray optics

INTRODUCTION

Alternate 'zones' modify phase/amplitude of incident wavefront:
for material of thickness (t), wavelength (λ), refractive index (1- δ -i β), the phase shift $\Delta\phi$, is: $\Delta\phi = 2\pi\delta t/\lambda$

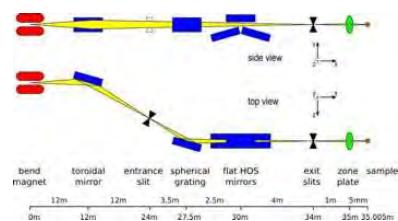



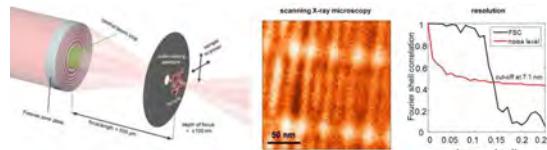


Resolution: $\delta_m = 1.22 \frac{\lambda}{m}$
Focal length: $f_m = \frac{D \Delta\lambda}{m \lambda}$



Working distance is 0.5 - 1.5 mm depending on the ZP and the x-ray wavelength

λ (nm)	Material	δ	β	Thickness (nm)	Transmission
13.5	Ru	0.113	0.017	59.7	0.38
13.5	Mo	0.076	0.0064	88.8	0.59
0.155 (8 keV)	Si	7.67e-6	1.77e-7	10000	0.86
0.155 (8 keV)	Au	4.77e-5	4.96e-6	1600	0.52

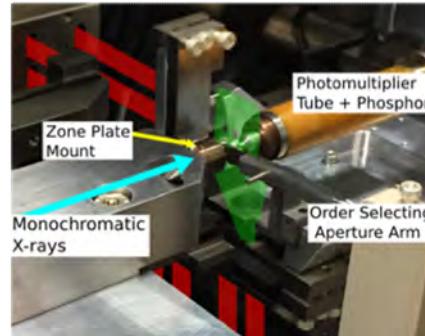
<http://zoneplate.lbl.gov/theory>
Barrett, R., X-ray Optics for Synchrotron Radiation Beamlines (ESRF)



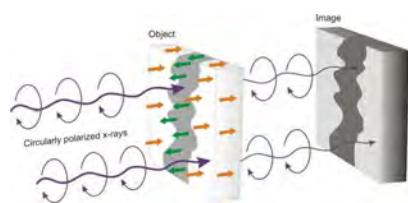

Scanning transmission x-ray microscopy

TECHNIQUES

Beamlne layout (PolLux, Swiss Light Source, PSI)

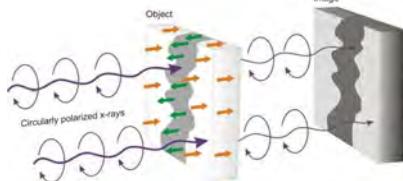


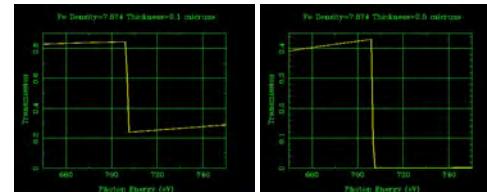
STXM scheme



Roesner, B, et al., Optica 7,
11, 1602 (2020)

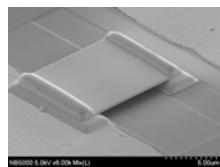
7 nm is the highest resolution achieved


XMCD contrast in transmission

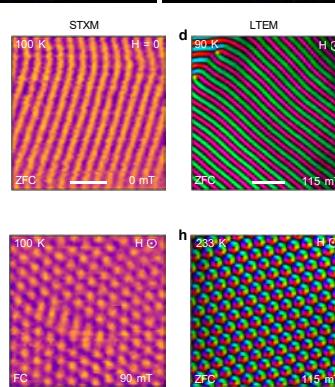

Scanning transmission x-ray microscopy

TECHNIQUES

XMCD contrast in transmission


Need thin samples!

Transparent Si_3N_4 membranes


Film deposition

Single crystal plate

Single crystal plate
IEEE Trans. on Magn. 2015, 51, 2

Cryogenic imaging →

Phase problem

TECHNIQUES

- X-ray scattering factor: $f^n = f^c - i f_1^m$ is **complex**
- Scattering is a Fourier transform of the real-space density, but the measured intensity $I = |F(f^n)|^2$ is **real**

$$f^n \stackrel{1/4}{\propto} \delta e_n \cdot e_n^\parallel p f_c^n \quad \delta e_n \times e_n^\parallel p \cdot M^n f_m^n$$

$$\propto \delta e_n \cdot M^n \delta e_n^\parallel \cdot M^n p f_m^n$$

$\mathcal{F}T'$ $\mathcal{F}T'$

- Coherence-based methods allow to solve the phase problem and reconstruct the real-space image
- Coherent diffraction imaging, holography, ptychography, interferometry, etc.

Taylor, G. (2003). Acta Cryst. D59, 1881-1890.

Coherent x-ray scattering / imaging

TECHNIQUES

- X-ray scattering factor: $f^{res} = f^c - i f_1^m$ is **complex**
- Measured intensity $I = |F(f^{res})|^2$ is **real**

A

Pinhole
Sample
Detector

B

Nanocrystal
Detector

C

Focusing optics
Extended sample
Order sorting aperture
Detector

D

Detector

E

Detector

F

Measured Fourier magnitude
Fourier transform
FFT
Modified image
Constraints
Updated Fourier transform
FFT^-1
Real-space image
Final output

- Coherence-based methods allow to solve the phase problem and reconstruct the real-space image
- Coherent diffraction imaging, holography, ptychography, etc.

http://www.physics.ucla.edu/research/imaging/research_CDI.html

Coherent x-ray scattering / imaging

TECHNIQUES

More detailed lectures on coherence-based technique are available at LINXS CoWork channel:

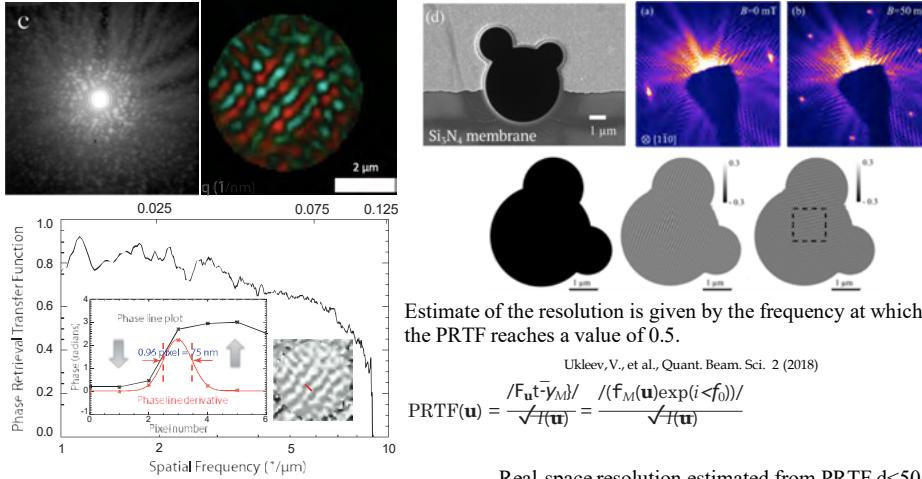
- 1) Introduction to CDI by Prof. Pablo Villanueva-Perez, <https://www.youtube.com/watch?v=RnBnwaYpgk8>
- 2) CDI principles and algorithms by Dr. Tomas Ekeberg, <https://www.youtube.com/watch?v=N3bbGsEApzE>
- 3) Bragg CDI by Dmitry Dzhigaev, <https://www.youtube.com/watch?v=jiY9e4pl2t0>
- 4) Ptychography by Virginie Chamard, <https://www.youtube.com/watch?v=LEfmq1afQo8>
- 5) Algorithms in Bragg CDI by Prof. Ian Robinson, <https://www.youtube.com/watch?v=MabspCO3yUs>

Coherent x-ray scattering / imaging

TECHNIQUES

- Measured intensity $I = |F(f^{res})|^2$
- Iterative phase retrieval can be used if the sample size is smaller than the coherent size of the beam (oversampling ratio $\sigma > 2$)

The figure includes:


- Panel c:** Left: Experimental image showing a bright central spot and a surrounding diffuse halo. Right: A 2D reconstruction of a cell with red and green regions. Scale bar: 2 μm.
- Panel below:** A plot of the Phase Retrieval Transfer Function (PRTF) versus Spatial Frequency (1/μm). The x-axis ranges from 1 to 10, and the y-axis ranges from 0.0 to 1.0. The plot shows a noisy curve with a peak around 1/μm and a sharp drop-off at higher frequencies. An inset shows a "Phase line plot" with a red line and a "Phase line derivative" plot below it. A text box indicates "0.95 pixel = 75 nm".
- Schematic:** A flowchart showing the iterative phase retrieval process. It starts with $S(\mathbf{x})$ (Real space) and $A(\mathbf{q})$ (Fourier space). $S(\mathbf{x})$ is transformed via FT to $A(\mathbf{q})$, which is then processed with "Random phases". $A(\mathbf{q})$ is transformed via FT^{-1} to $A'(\mathbf{q})$ (Fourier space). $A'(\mathbf{q})$ is processed with "Fourier space constraints" to produce $A(\mathbf{q})$. $A(\mathbf{q})$ is processed with "Real space constraints" to produce $S'(\mathbf{x})$ (Real space). $S'(\mathbf{x})$ is then transformed via FT back to $S(\mathbf{x})$.
- Equation:**
$$PRTF(\mathbf{u}) = \frac{|F_{\mathbf{u}}|^2 \cdot \gamma_M|}{|f_M(\mathbf{u}) \exp(i \cdot f_0)|} = \frac{|f_M(\mathbf{u}) \exp(i \cdot f_0)|}{\sqrt{I(\mathbf{u})}}$$
- Text:** "Real-space resolution estimated from PRTF $d < 50$ nm ($\sim 30-40$ nm) without focusing optics"

Turner, J., et al., PRL 107.3 (2011): 033904. Marchesini, S., et al., Physical Review B 68.14 (2003): 140101.

Coherent x-ray scattering / imaging

TECHNIQUES

- Measured intensity $I = |F(f^{res})|^2$
- Iterative phase retrieval can be used if the sample size is smaller than the coherent size of the beam (oversampling ratio $\sigma > 2$)

Estimate of the resolution is given by the frequency at which the PRTF reaches a value of 0.5.

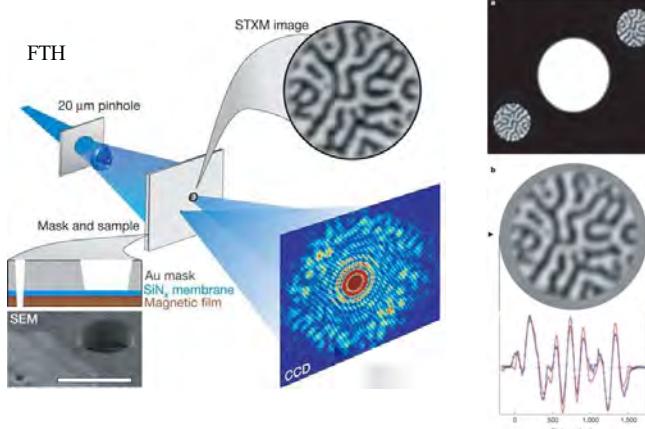
$$\text{PRTF}(\mathbf{u}) = \frac{|F_{\mathbf{u}}|^2 \gamma_M|}{\sqrt{I(\mathbf{u})}} = \frac{|f_M(\mathbf{u}) \exp(i \phi_0)|}{\sqrt{I(\mathbf{u})}}$$

Real-space resolution estimated from PRTF $d < 50$ nm ($\sim 30\text{-}40$ nm) without focusing optics

Turner, J., et al., PRL 107.3 (2011): 033904.

Marchesini, S., et al., Physical Review B 68.14 (2003): 140101.

Fourier transform holography


TECHNIQUES

- Phase problem can be solved with the amplitude modulation by a reference wave:

$$\mathcal{F}^{-1} |F(u, v)|^2 = f \otimes f = o \otimes o + r \otimes r + o \otimes r + r \otimes o,$$

Real-space reconstruction via single Fourier transform

Charge and magnetic contrast separation:

Note: x-ray holography ≠ electron holography

Fourier transform holography (FTH) with a reference hole is limited by the intensity/resolution ratio

TECHNIQUES
Fourier transform holography and HERALDO

- Phase problem can be solved with the amplitude modulation by a reference wave:

The phase is encoded in the interference pattern (object and reference)

$$\mathcal{F}^{-1} |F(u, v)|^2 \# = f \otimes f = o \otimes o + r \otimes r + o \otimes r + r \otimes o,$$

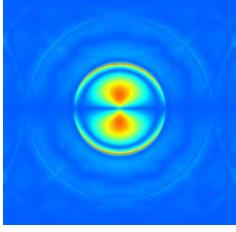
Derivative of the step function is two delta functions

$$\mathcal{L}^{(n)} \{f \otimes f\} = \frac{1}{2} (-1)^n [A^*r(x+x_0, y+y_0) + r \otimes g] + \frac{1}{2} [Ar^*(x_0 - x, y_0 - y) + g \otimes r] + \mathcal{L}^{(n)} \{o \otimes o\} + (-1)^n o \otimes g + g \otimes o + (-1)^n A^*o(x+x_0, y+y_0) + Ao^*(x_0 - x, y_0 - y)$$

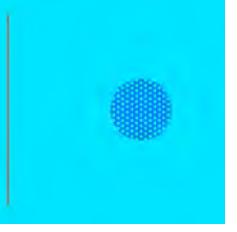
Reference slit can improve the contrast compared to reference hole without loosing the resolution

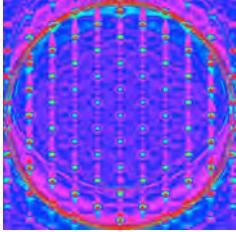
Guizar-Sicairos, M. and Fienup, J.R., 2007. Holography with extended reference by autocorrelation linear differential operation. *Optics express*, 15(26), pp.17592-17612.

Fourier transform holography (FTH) with a reference hole is limited by the intensity resolution ratio

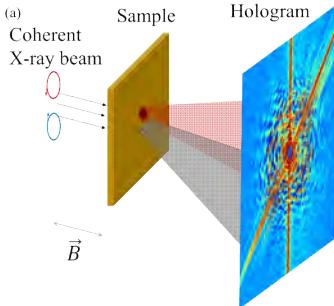


The diagram shows two horizontal lines. The left one is a square pulse representing a reference hole. The right one is a rectangle with a vertical line through its center representing a reference slit.


$\mathcal{F}^{-1}(I)$


$\mathcal{F}^{-1}(I)$

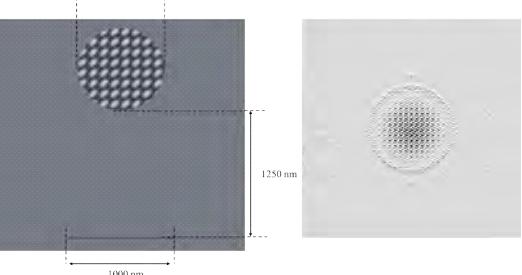
$\mathcal{F}^{-1}(I)$


$\mathcal{F}^{-1}(I)$

TECHNIQUES
Holography with extended reference (HERALDO)

HERALDO example: skyrmion host $\text{Co}_8\text{Zn}_8\text{Mn}_4$

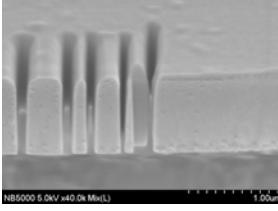
(a)


Coherent X-ray beam

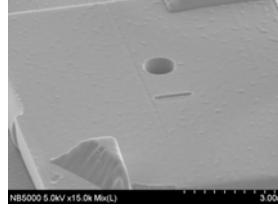
Sample

Hologram

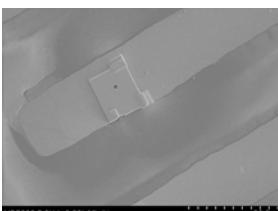
\vec{B}


HERALDO slit separation conditions simulation

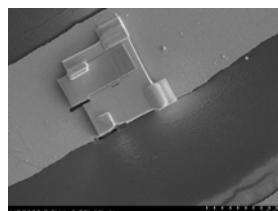
700 nm


1250 nm

1000 nm


NB5000 5.0kV x40.0k Mic(L)

1.00μm


NB5000 5.0kV x15.0k Mic(L)

3.00μm

NB5000 5.0kV x2.00k Mic(L)

20.00μm

NB5000 5.0kV x3.50k Mic(L)

10.0μm

Aperture size: $d=700$ nm
 Slit size: $w=0.04$ μm, $l=1$ μm

Ukleev, V., et al. PRB, 99.14 144408 (2019)

13

TECHNIQUES
Holography with extended reference (HERALDO)

- Phase problem can be solved with the amplitude modulation by a reference wave:
$$F^{-1} |F(u, v)|^2 = f \otimes f = o \otimes o + r \otimes r + o \otimes r + r \otimes o,$$

Real-space reconstruction via Fourier transform an linear differential operator (HERALDO)

No compromise between the contrast and resolution

HERALDO example: $\text{Co}_8\text{Zn}_8\text{Mn}_4$

$E=779 \text{ eV RC}$ $E=779 \text{ eV LC}$ $E=779 \text{ eV LC}$

Co L_3 edge Mn L_3 edge

(a) sample coherent x-ray beam (b) hologram (c) differential filter

hologram $10^3 \quad 10^4 \quad 10^5$
filter $-1 \quad 0 \quad 1$

$$\frac{d}{dX} [r \otimes t] = C + \frac{d}{dX} [o \otimes r] + \frac{d}{dX} [r \otimes o] = C + [-o] \otimes \frac{d}{dX} [r] + \frac{d}{dX} [r] \otimes o$$

$$\frac{d}{dX} [t \otimes r] = C - [o_{x+o}] + [o_{x+o}] + C$$

(d) (e)

100 nm 100 nm

1 μm

Ukleev, V., et al. PRB, 99(14) 144408 (2019)

Duckworth, T. A., (2011). Optics express, 19(17), 16223-16228.

TECHNIQUES
X-ray ptychography

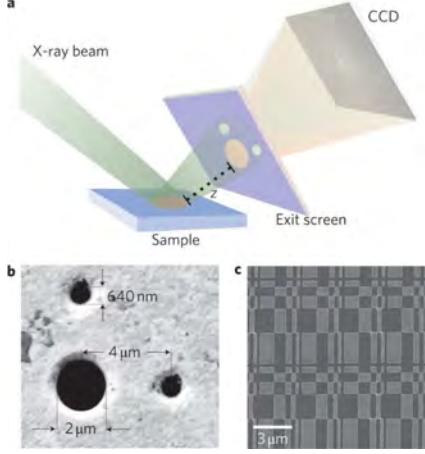
Taking coherent scattering patterns from overlapping regions using FZP

(c) (d)

15 nm real-space resolution imaging of magnetic domains in SmCo_5

(e) (f) (g)

• Reconstruction algorithm similar to CDI

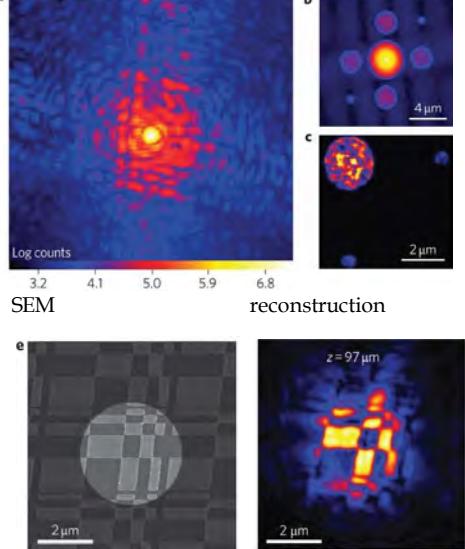

• Ptychography can be used to study extended objects

Shi et al. Appl. Phys. Lett. 108, 094103 (2016)

X-ray holography in reflection

TECHNIQUES

Holographic mask is placed after reflected beam


a

X-ray beam

Sample

CCD

Exit screen

a

Log counts

b

4 μm

c

2 μm

d

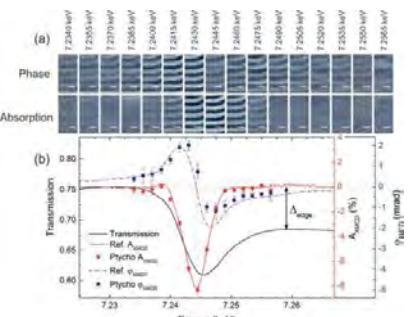
SEM

e

z = 97 μm

2 μm

reconstruction


- So far only demonstrated only for charge patterns...
- Ptychography is also possible
- ~60 nm resolution

S. Roy et al. Nature Photonics 5, 243–245(2011)

X-ray imaging in three dimensions

TECHNIQUES

Hard x-ray resonant tomography (Gd L_3 edge)

(a)

Phase

Absorption

0.80

0.75

0.70

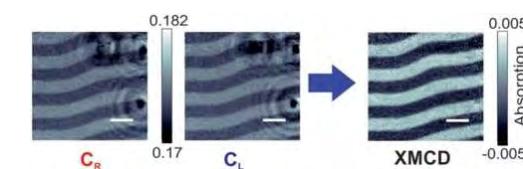
0.65

0.60

7.23 7.24 7.25 7.26

Energy (keV)

Transmission


Ref. A_{local}

Ref. A_{mean}

Ptych. ψ_{local}

$A_{\text{local}} (\%)$

$\mu_{\text{local}} (\mu\text{m}^{-1})$

0.182

0.005

0.17

C_R

C_L

XMCD

-0.005

Magnetic contrast variation across the edge

- High energy allows transmission of a few tens μm
- Ptychographic scans are measured for multiple projections to reconstruct 3D magnetization vector distribution



Circularly polarized X-rays

Optics

0°

30°

a

b

c

1.2

0.8

0.4

0.0

1.2

0.8

0.4

0.0

0.1

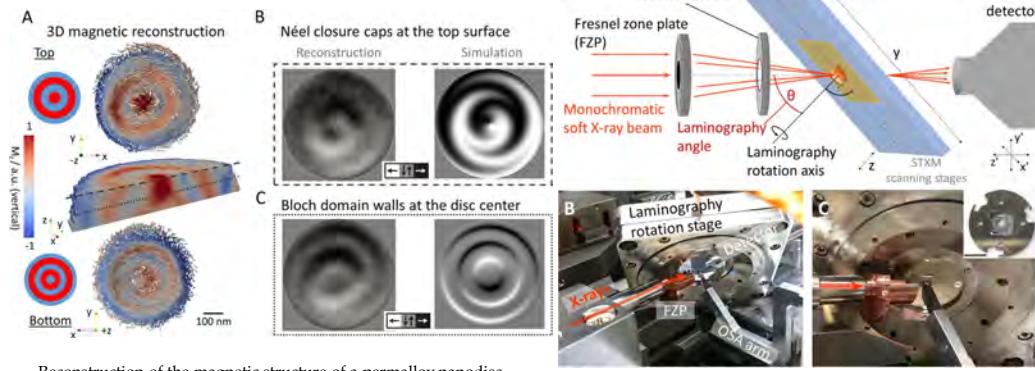
0.05

-0.05

0.1

Magnetization

μm^{-1}


Donnelly, C., et al., Phys. Rev. B 94, 064421 (2016)

Donnelly, C., et al., Nature 547, 328–331(2017)

X-ray imaging in three dimensions

TECHNIQUES

Soft x-ray resonant laminography (TM L_3 edge or RE M-edge)

Reconstruction of the magnetic structure of a permalloy nanodisc

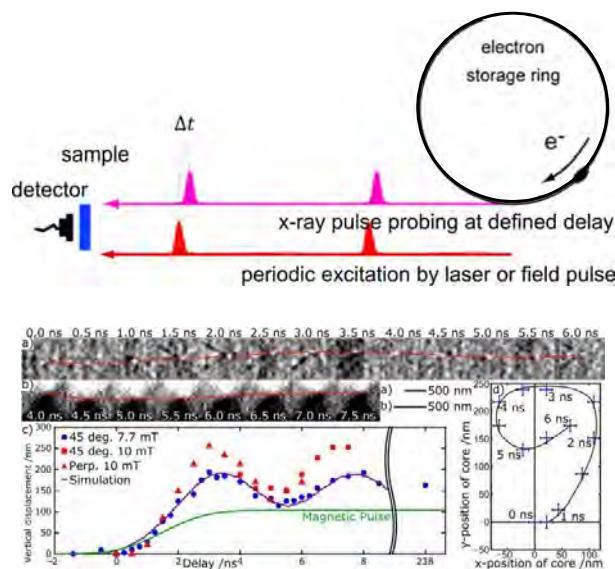
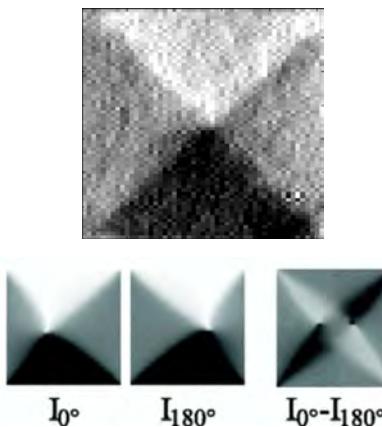
- *Naturally thin or nanofabricated samples*
- *Multiple projections to reconstruct 3D magnetization vector distribution measured with single rotation axis*
- *Challenging to introduce complex sample environment*

Witte, K., et al., *Nano Lett.*, 20, 1305–1314 (2020)

Great talk by Claire Donnelly on 3D imaging (LINXS seminar)
<https://www.youtube.com/watch?v=K4iQfE0U4Uo>

Hierro-Rodríguez, A., et al., Nat. Comm., 11, 6382 (2020)

<https://www.youtube.com/watch?v=K4jQIE0HaHs>

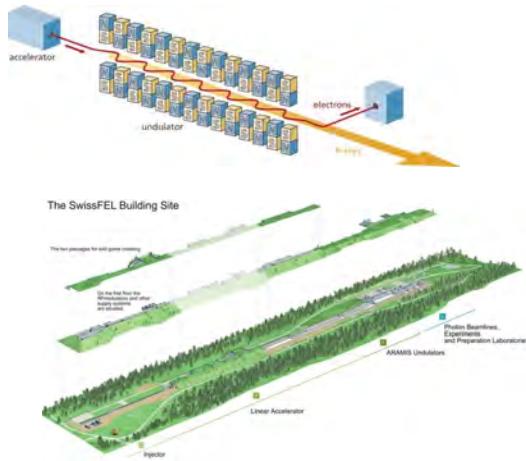


Time-resolved imaging

TECHNIQUES

Stroboscopic pump-probe imaging: synchronized x-ray and excitation pulses (magnetic field, laser pulses, etc.)

Sub-100 ps imaging of *periodic* phenomena

PEEM, STXM, holography, 3D methods, etc.


Stevenson, S. E., et al., PRB 87.5: 054423.(2013)
Bukin, N., et al., Sci. Rep.: 6, 36307 (2016)

Time-resolved imaging

TECHNIQUES

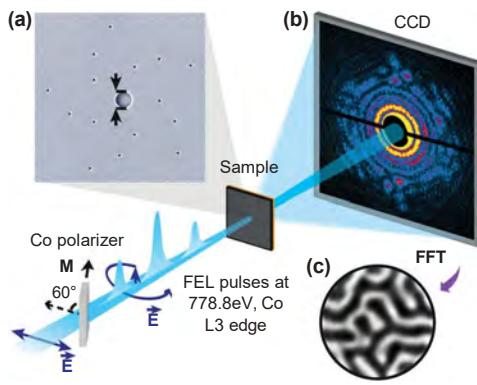
Time resolution is limited by the pulse duration

Need high-flux x-ray source with fs pulses to study spin dynamics at atomic scales:
x-ray free-electron laser

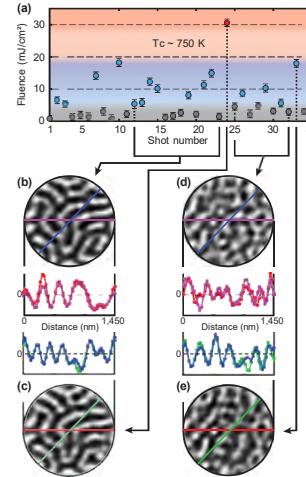
Please, watch this (5min) movie about SwissFEL

<https://www.psi.ch/en/swissfel>

<https://www.youtube.com/watch?v=P2CG69hRYR8>


Time-resolved imaging

TECHNIQUES


Time resolution is limited by the pulse duration

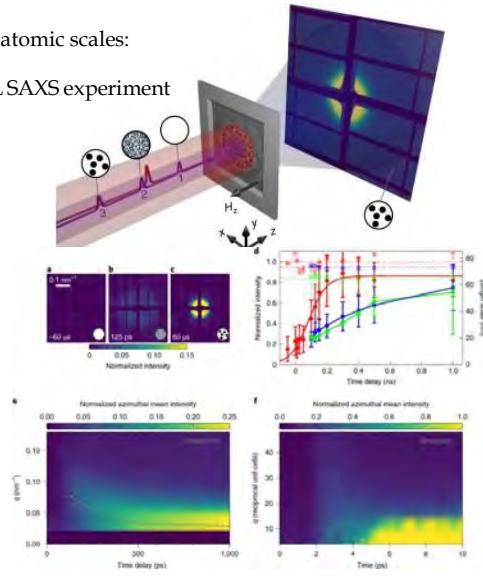
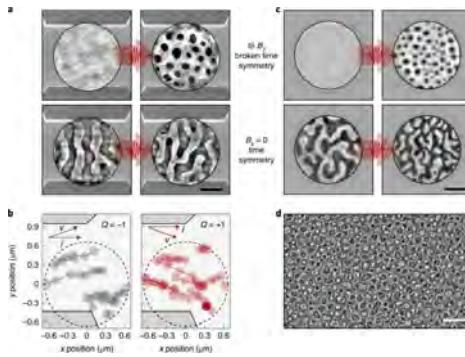
Need high-flux x-ray source with fs pulses to study spin dynamics at atomic scales:
x-ray free-electron laser

XFEL experiment@LCLS: single-shot imaging

Damage of the spin structure by the pulses longer than 80 ps! -> non-linear interaction of x-rays with electronic order

Wang, T., et al., PRL 108, 267403 (2012)

Time-resolved imaging



TECHNIQUES

Time resolution is limited by the pulse duration

Need high-flux x-ray source with fs pulses to study spin dynamics at atomic scales:
x-ray free-electron laser

XFEL SAXS experiment

Synchrotron-based FTH imaging:

Nucleation of magnetic skyrmions by optical laser pulses:
time scale >10 ps

Büttner, F., et al. Nature Materials 20, 30-37 (2021)

SUMMARY

Comparison to other magnetic imaging techniques

Method	Probe	Spatial resolution	Temporal resolution	Magnetization direction	Sample type	Instrument type
Kerr microscopy	Optical photons	Fair (>300 nm)	Very good (fs)	Any	Surface (Kerr) Thin film (Faraday)	Lab.
Lorentz TEM (+DPC, holography, etc.)	Electrons	Very good (<10 nm)	Good (ps)	In-plane	Thin film	Lab.
MFM	Cantilever	Good (10-100 nm)	Bad (min)	Out-of-plane	Surface	Lab.
Neutron imaging	Neutrons	Bad (μ m)	Bad (min)	Any	Bulk	Neutron source
PEEM	X-rays + Electrons	Good (10-100 nm)	Good (ps)	Out-of-plane (NI) In-plane (GI)	Surface	Synchrotron
STXM (+ holography, ptychography, etc.)	X-rays	Good (10-100 nm)	Good (ps)	Out-of-plane	Thin film 'thinned bulk' <1 μ m	Synchrotron

SUMMARY

Where?

Lightsources of the World

SUMMARY

Where?

...and of Europe

<https://www.wayforlight.eu/>

SUMMARY

When?

Facility	Deadline
CHESS (USA)	2022/12/20
Pohang XFEL (Korea Rep.)	2022/12/31
Canadian Light Source (Canada)	2022/12/31
European XFEL (Germany)	2022/12/29
MAX IV (Sweden)	2023/02/28
ESRF (France)	2023/03/01
PETRA-III (Germany)	2023/03/01
BESSY-II (Germany)	2023/03/01
APS (USA)	2023/04/17
SwissFEL (Switzerland)	2023/06/30
ALS (USA)	2023/07/31
SLS (Switzerland)	to be announced (SLS 2.0 upgrade is upcoming)

Committee decision ~2-3 months after the proposal submission deadline
 Beamtime ~4-12 months after the proposal submission deadline

<https://lightsources.org/for-users/proposal-deadlines/>

Beamlines (example)					
SUMMARY					
Method	Beamline	Facility	Energy range	Magnetic field	Temperature range
PEEM	SIM	SLS PSI, Switzerland	90-2000 eV	~100 mT	120-800 K
	SPEEM@UE49-PGM	BESSY II, Germany	100-1800 eV	~100 mT	45-600 K
	IO6	Diamond, UK	100-1300 eV	available	100-1900 K
	CIRCE	ALBA, Spain	100-2000 eV	available	100-1500 K
	HERMES	SOLEIL, France	70-2500 eV	available	150-2000 K
TXM	MISTRAL	ALBA, Spain	270-1200 eV	2 mT	105-300 K
	SPEEM@UE41-PGM	BESSY II, Germany	180-2800 eV	no	100-300 K
STXM	POLLUX	SLS PSI, Switzerland	250-1600 eV	200 mT	280-400 K
	HERMES	SOLEIL, France	70-2500 eV	20 mT	150-600 K
	MAXYMUS	BESSY II, Germany	200-1900 eV	250 mT	30-350 K
Holography / coherent diffraction imaging in transmission	ALICE-2	BESSY II, Germany	depends on beamline	700 mT	10-350 K
	COMET@SEXTANTS	SOLEIL, France	50-1700 eV	1000 mT	30-800 K
	MaReS@BOREAS	ALBA, Spain	50-4000 eV	2000 mT	20-400 K
https://www.wayforlight.eu/					

Summary					
SUMMARY					
<ul style="list-style-type: none"> • Real-space imaging of magnetization down to (sub)10 nm is possible using resonant x-rays • Element selectivity is naturally provided • Complex sample environment (high vacuum, cryogenic temperatures, magnetic fields, optics, etc.) • Naturally thin or nanofabricated samples or surfaces • Coherent imaging has great potential to push the resolution to ~1 nm limit • Three-dimensional imaging is possible • Time-resolved imaging (sub-100 ps routinely, fs time scale at FELs) is possible 					

Further reading/watching

SUMMARY

- **Fundamentals of magnetic dichroism, sum rules, etc.**

Stöhr, J. "X-ray magnetic circular dichroism spectroscopy of transition metal thin films." *Journal of Electron Spectroscopy and Related Phenomena* 75 (1995): 253-272.
van der Laan, G., and Figueroa, A. I. "X-ray magnetic circular dichroism—A versatile tool to study magnetism." *Coordination Chemistry Reviews* 277 (2014): 95-129.

- **Resonant x-ray scattering**

Fink, J., et al. "Resonant elastic soft x-ray scattering." *Reports on Progress in Physics* 76.5 (2013): 056502.
Paolusini, L., and de Bergevin F. "Magnetic and resonant X-ray scattering investigations of strongly correlated electron systems." *Comptes Rendus Physique* 9.5-6 (2008): 550-569.

- **X-ray magnetic imaging**

Fischer, P. "Magnetic imaging with polarized soft x-rays." *Journal of Physics D: Applied Physics* 50.31 (2017): 313002.
Reeve, R. M., et al. "Magnetic imaging and microscopy." *Handbook of Magnetism and Magnetic Materials* (2020): 1-52.

- **Coherence**

Nugent, K. A. "Coherent methods in the X-ray sciences." *Advances in Physics* 59.1 (2010): 1-99.
Munro, P. "Coherent x-ray imaging across length scales." *Contemporary Physics* 58.2 (2017): 140-159.
LINXS Webinar CoWork series on YouTube <https://www.youtube.com/playlist?list=PLoa4trwK2Db7kaHauxrN9KhPYgS44Oo8Y>

- **Dynamics**

Rafstrey, D., and Fischer, P. "Advanced magnetic X-ray spectro-microscopies to characterize mesoscopic magnetic materials." *Journal of Magnetism and Magnetic Materials* 545 (2022): 168734.
Huang, N., et al. "Features and futures of X-ray free-electron lasers." *The Innovation* 2.2 (2021): 100097.

HZB photon school (with practicals!)

SUMMARY

HZB Helmholtz Zentrum Berlin

HZB PHOTON SCHOOL

ON-LINE LECTURES* Macroe

ON-SITE TRAININGS A+

HZB Wilhelm-Conrad-Rontgen-Campus, Berlin-Adlershof

CLOSING DATE
FOR APPLICATION
6 NOVEMBER
2020

A Practical Introduction to Photon Science

The program of this school is aimed primarily at master students and other early stage researchers in physics, chemistry, materials science, engineering, and life or environmental sciences. Students will be introduced to advanced synchrotron- and laboratory-based photon science methods that probe the physical, chemical, and electronic structures of materials as well as the function and dynamics of complex material systems. The basic and specialized lectures are given by experienced teachers, who are HZB scientists or BESSY II super-users from our partner universities and research centers.

*contingent on BESSY II is operating at a level that allows HZB employees access

TRAININGS IN:

- Synchrotron-based methods from BESSY II beamlines
- Laboratory-based methods
- Data collection, treatment, interpretation, and presentation
- How to write successful beamtime proposals

hz-b.de/photonschool

For further information, visit our website:

Thomas LaGrange
Senior Staff Scientist

**Lorentz Transmission
Electron Microscopy: Theory,
Practice, Simulations, and
Quantitative Phase
reconstruction**

Doctoral Course MSE-670

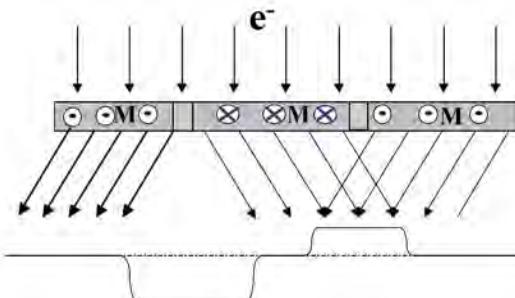
November 16th, 2022

thomas.lagrange@epfl.ch • www.epfl.ch• cime.epfl.ch• +41 (0)21 6934430

Outline:

Lorentz microscopy has been used extensively for the past 40 years to study magnetic domain structure and magnetization reversal mechanisms in magnetic thin films and elements. Here, a brief introduction to standard image modes in TEM and the theory involved is presented. The second half of lectures is devoted to discussing how the sample's phase shift and magnetic properties can be quantified from the LTEM observations.

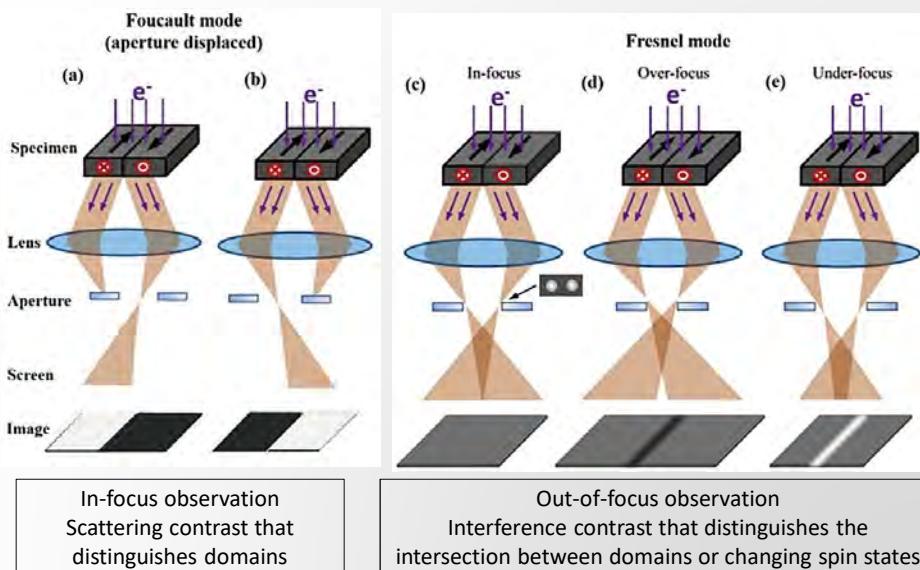
- 1) Lorentz Transmission Electron Microscopy (LTEM)
 - A. Lorentz Force
 - B. LTEM Imaging modes
 - C. Examples
- 2) Simulation and quantitative analysis
 - A. Modeling magnetic images in a real microscope
 - B. Transport of Intensity Equations (TIE)
 - C. Examples


Lorentz TEM (LTEM): Lorentz force

Electrons, which pass a region having electrostatic and/or magnetic fields, are deflected by Lorentz force \mathbf{F}_L

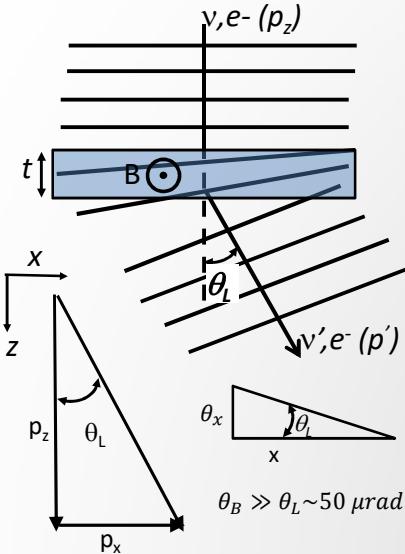
$$\mathbf{F}_L = -e(\mathbf{E} + \mathbf{v} \times \vec{\mathbf{B}})$$

Suppose $E \approx 0$, and \mathbf{F}_L acts normal and deflects the electron beam. Only the in-plane magnetic induction, B_{\perp} , deflects the beam.


$$\vec{\mathbf{B}} = \vec{\mathbf{B}}_{\perp} + B_z \vec{\mathbf{n}}$$

3

thomas.lagrange@epfl.ch • www.epfl.ch • lumes.epfl.ch • +41 (0)21 6935861


LTEM: Lorentz Transmission Electron Microscopy Different imaging modes for observing magnetic features

4

thomas.lagrange@epfl.ch • www.epfl.ch • lumes.epfl.ch • +41 (0)21 6935861

Diffraction due to sample magnetization

$$p_x = \int_0^\tau \vec{F}_L d\tau = e \int_0^t B_\perp dz = e B_\perp t$$

$$p_z = mv$$

Lorentz deflection gives small angles

$$\theta_L \approx \frac{p_x}{p_z} = \frac{eB_\perp t}{\hbar k} = \frac{eB_\perp t}{mv} = C_E B_\perp t$$

$$\varphi(x) = -2\pi\vec{k}\theta_x = -\frac{2\pi e B_\perp t x}{h}$$

For a varying \vec{B} , we arrive at the general solution for the phase shift due to a magnetic induction within the sample

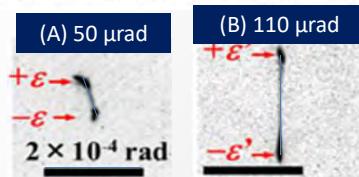
$$\varphi(x, y) = -\frac{2\pi e}{h} \int \vec{B} ds$$

5

thomas.lagrange@epfl.ch • www.epfl.ch • lumes.epfl.ch • +41 (0)21 6935861

Measuring the Lorentz diffraction angle θ_L with small angle diffraction experiments

PHYSICAL REVIEW B 94, 024407 (2016)

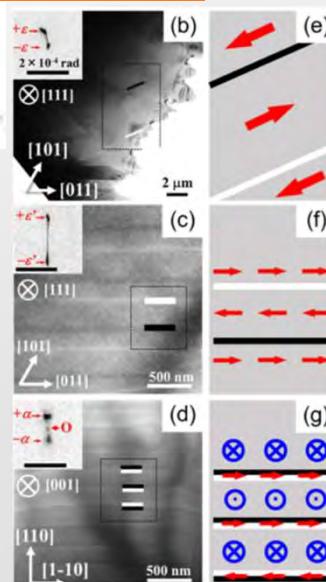

Lorentz microscopy and small-angle electron diffraction study of magnetic textures in $\text{La}_{1-x}\text{Sr}_x\text{MnO}_3$ ($0.15 < x < 0.30$): The role of magnetic anisotropy

A. Kotani,¹ H. Nakajima,¹ K. Harada,^{1,2} Y. Ishii,¹ and S. Mori^{1,2}

¹Department of Materials Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan

²Center for Emergent Matter Science, the Institute of Physical and Chemical Research (RIKEN), Hayama, Saitama 350-0395, Japan

(Received 21 December 2015; revised manuscript received 15 June 2016; published 6 July 2016)

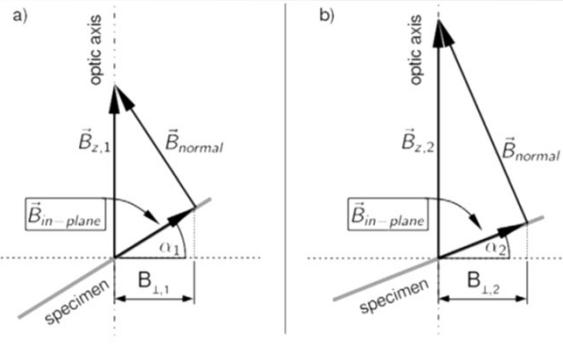


$$\theta_L = \frac{eB_\perp t}{mv} = C_E B_\perp t$$

$$C_E = \frac{9.37783}{E_0 + 0.97485 \times 10^{-3} E_0^2} \xrightarrow{200 \text{ kV}} 0.607 \text{ micro-radians/T/nm}$$

For a TEM foil thickness of 150 nm

$$(A) B_\perp = 550 \text{ mT} \quad (B) B_\perp = 1.2 \text{ T}$$



6

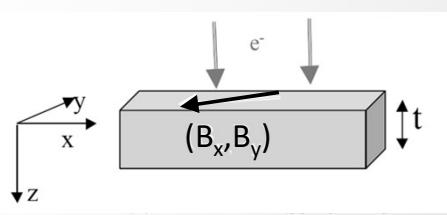
thomas.lagrange@epfl.ch • www.epfl.ch • lumes.epfl.ch • +41 (0)21 6935861

Lorentz TEM (LTEM): Lorentz force

The components of the magnetic induction in the sample can be determined by tilting the specimen.

$$\vec{B}_{in-plane} = \vec{B}_\perp + B_z \sin \alpha$$

$$\frac{B_{\perp,1}}{B_{\perp,2}} = \frac{\sin \alpha_1}{\sin \alpha_2}$$


7

thomas.lagrange@epfl.ch • www.epfl.ch • lumes.epfl.ch • +41 (0)21 6935861

Determining the 3 components of the magnetic induction vector in the sample

A Sample of thickness (t) having internal magnetic fields with magnetic inductive vector (\vec{B}_\perp) in two direction, B_x and B_y

Gauss's Law

$$\text{Div } \vec{B} = 0 \Rightarrow \frac{\partial B_x}{\partial x} = -\frac{\partial B_y}{\partial y}$$

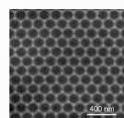
$$\frac{\partial^2 \Delta\varphi}{\partial x \partial y} = -\frac{2\pi et}{h} \frac{\partial B_y(x, y)}{\partial y}$$

$$B_x = -\int \frac{\partial B_y}{\partial y} dx = \frac{h}{2\pi et} \frac{\partial^2 \Delta\varphi}{\partial x \partial y} dx$$

$$B_x = \frac{h}{2\pi et} \frac{\partial \Delta\varphi}{\partial y}$$

and

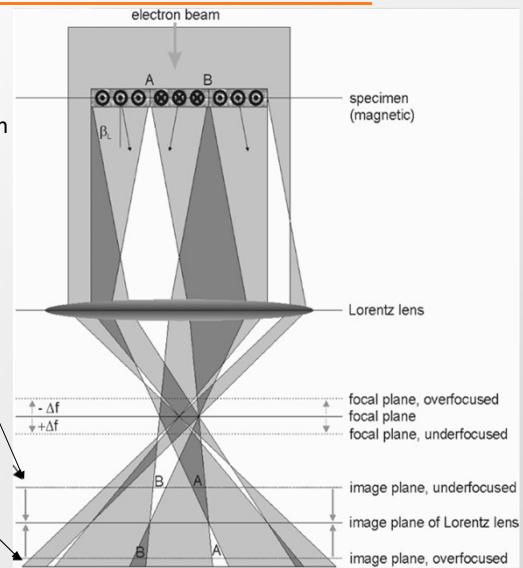
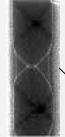
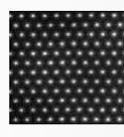
$$B_y = -\frac{h}{2\pi et} \frac{\partial \Delta\varphi}{\partial x}$$


8

thomas.lagrange@epfl.ch • www.epfl.ch • lumes.epfl.ch • +41 (0)21 6935861

LTEM: Fresnel imaging mode

Underfocus




Skymions
in FeGe

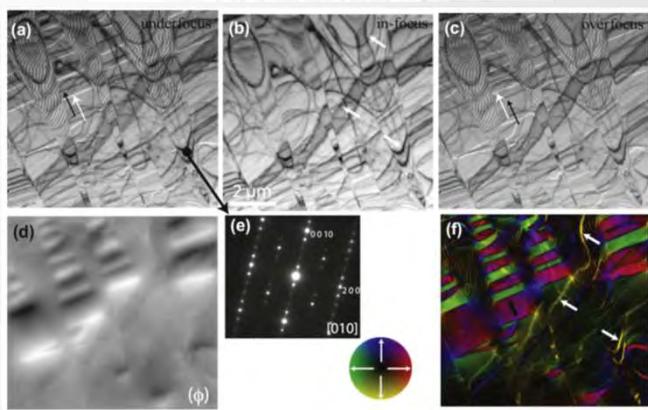
Magnetic domains in
Co Nanomagnets

Overfocus

A. Kovacs et al., Lorentz microscopy and off-axis electron holography of magnetic skyrmions in FeGe. *Resolution and Discovery* 1, 2 (2016)

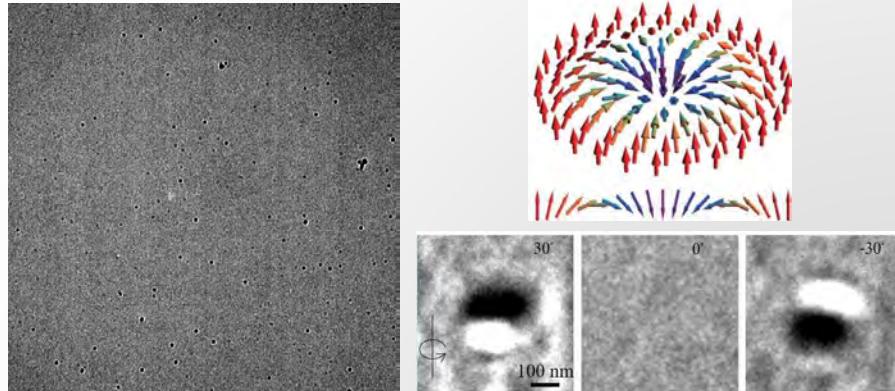
9

thomas.lagrange@epfl.ch • www.epfl.ch • lumes.epfl.ch • +41 (0)21 6935861


Example: Magnetic domain structure in ferromagnetic SMA

In situ lorentz TEM magnetization study of a Ni-Mn-Ga
ferromagnetic shape memory alloy

A. Budruk^a, C. Platak^b, A.K. Petford-Long^a, M. De Graef^{a,b,*}


^a Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
^b Bureau National d'Essais, 97361 Gizeh (Cairo), Egypt

10

thomas.lagrange@epfl.ch • www.epfl.ch • lumes.epfl.ch • +41 (0)21 6935861

Example: In-situ LTEM observations of Néel type Skyrmiions (Pt-Co multilayers) under an applied field (~100 mT)

I. Madan, G. Berruto and T. LaGrange Unpublished data

Complementary study in a similar system

Zhang, S., et al. (2018). "Creation of a thermally assisted skyrmion lattice in Pt/Co/Ta multilayer films." *Applied Physics Letters* **113**(19): 192403.

11

thomas.lagrange@epfl.ch • www.epfl.ch• lumes.epfl.ch• +41 (0)21 6935861

Example: Imaging Skyrmiions in CoZnMn alloys

Transformation between meron and skyrmion topological spin textures in a chiral magnet

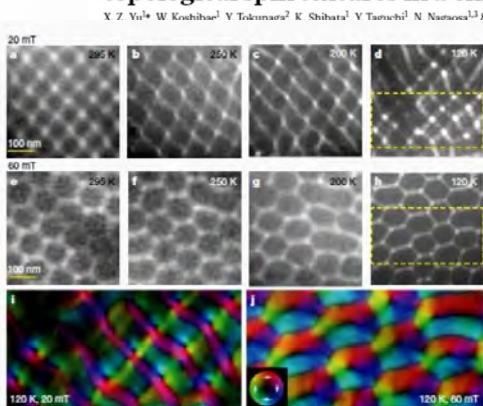


Fig. 3 | Stability of the square (anti)meron and hexagonal skyrmion lattices in the (001) plane of $\text{Co}_x\text{Zn}_y\text{Mn}_3$. a–h, Over-focused Lorentz TEM images of the square (anti)meron (a–d) and hexagonal skyrmion (e–h) lattices observed with decreasing temperature at a magnetic field of 20 mT and 60 mT, respectively (experimental procedures are denoted by red dashed arrows in the phase diagram in Extended Data Fig. 3b). i, j, Magnetization textures for the boxed regions in d and h, respectively, deduced by analysing Lorentz TEM images with the transport-of-intensity equation. The colour wheel in the inset of j indicates the in-plane magnetization direction.

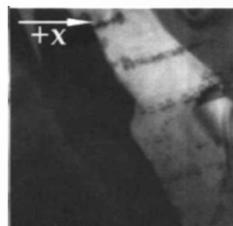
The equilibrium period of the helical phase

$$L_D = 4\pi \frac{A}{D}$$

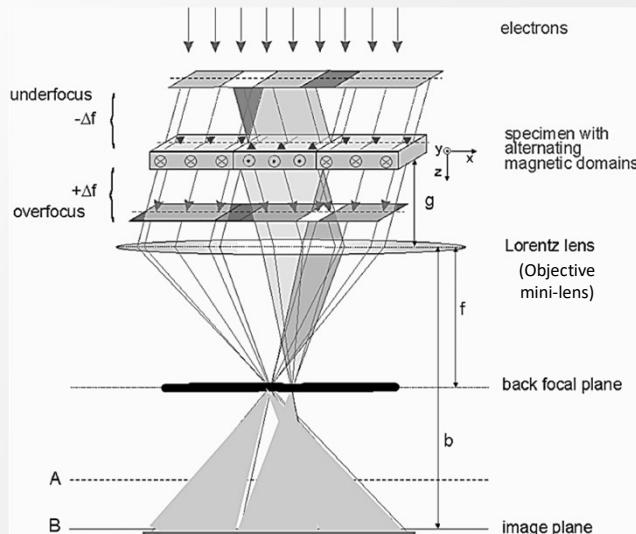
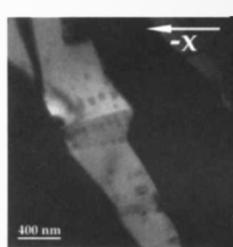
where A is the micromagnetic exchange constant and D is the DMI constant

Critical field corresponding to the saturation field of the system

$$H_D = \frac{D^2}{2M_s A}$$

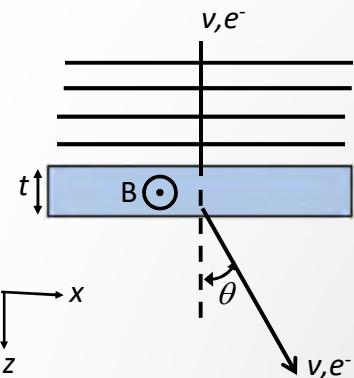

where M_s is the magnetization

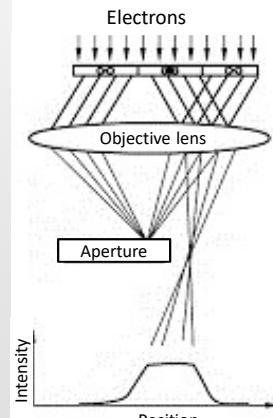
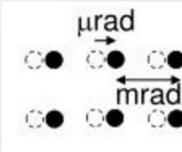
12



thomas.lagrange@epfl.ch • www.epfl.ch• lumes.epfl.ch• +41 (0)21 6935861

LTEM: Foucault imaging

Aperture displaced $2\theta_L$


Aperture displaced $-2\theta_L$

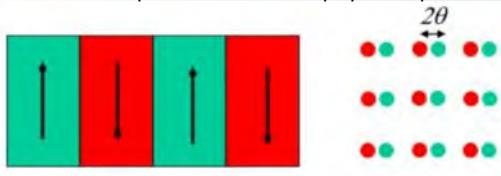


13

thomas.lagrange@epfl.ch • www.epfl.ch • lumes.epfl.ch • +41 (0)21 6935861

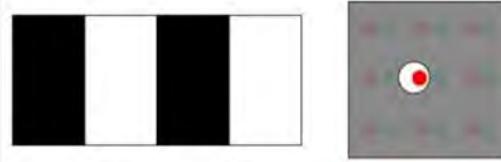
Foucault imaging is darkfield image formed using the magnetically deflected spots

The Foucault image is a darkfield image formed by the magnetically scattered beams

Remember the angle at which electrons are deflected by a magnetic field or potential is more than the order of magnitude smaller than the Bragg angles

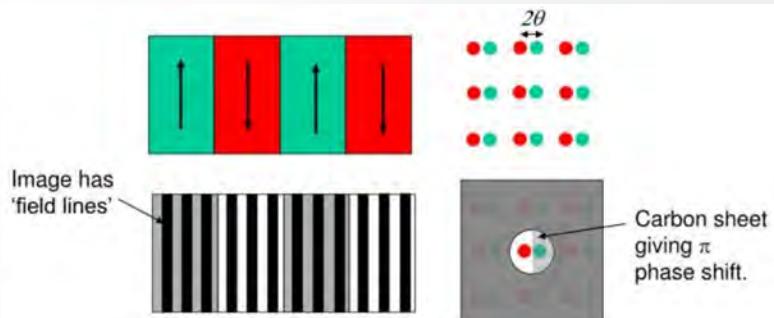

$$\theta_L = \frac{\lambda e B_{\perp} t}{h} \approx 50 \mu\text{rad} \text{ for } \sim 500 \text{ mT and } 200 \text{ kV electrons}$$

14


thomas.lagrange@epfl.ch • www.epfl.ch • lumes.epfl.ch • +41 (0)21 6935861

Experimental setup for Foucault Imaging

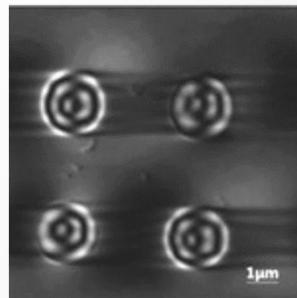
Take the example of a magnetic sample having domains of opposing \vec{B} vectors; the diffraction pattern contains split spots separated by $2\theta_L$


A Foucault image is generated by selecting one of the split spots and using those electrons to form the image intensity (contrast). The dark field or Foucault image exhibits bright intensity having a magnetic induction that allows electrons to pass through the aperture.

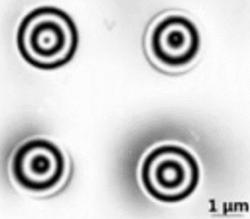
15

thomas.lagrange@epfl.ch • www.epfl.ch • lumes.epfl.ch • +41 (0)21 6935861

Combining a carbon film phase-plate with Foucault imaging


Instead of selecting one of the split spots to generate a Foucault image, both diffracted spots pass through an aperture partially covered by a carbon film. The thickness of the carbon film is designed to give a π phase shift of the electron beam at a given accelerating voltage, and only one of the spots passes through the film. Under this setup, the Foucault image will contain *Field Lines* within the domains with a 2π phase shift between them.

16

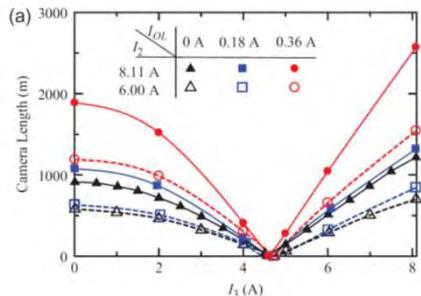

thomas.lagrange@epfl.ch • www.epfl.ch • lumes.epfl.ch • +41 (0)21 6935861

Combining a carbon film phase-plate with Foucault imaging

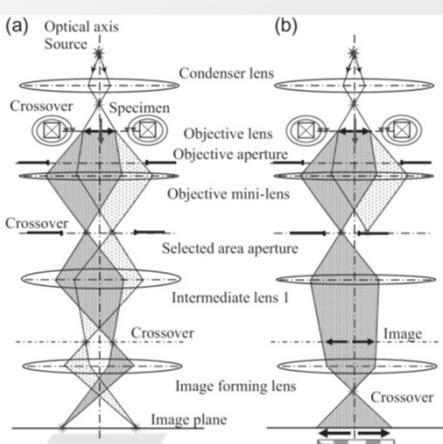
Circular Permalloy dots on SiN

Phase calculation using TIE

Instead of selecting one of the split spots to generate a Foucault image, both diffracted spots pass through an aperture partially covered by a carbon film. The thickness of the carbon film is designed to give a π phase shift of the electron beam at a given accelerating voltage, and only one of the spots passes through the film. Under this setup, the Foucault image will contain *Field Lines* within the domains with a 2π phase shift between them.


17

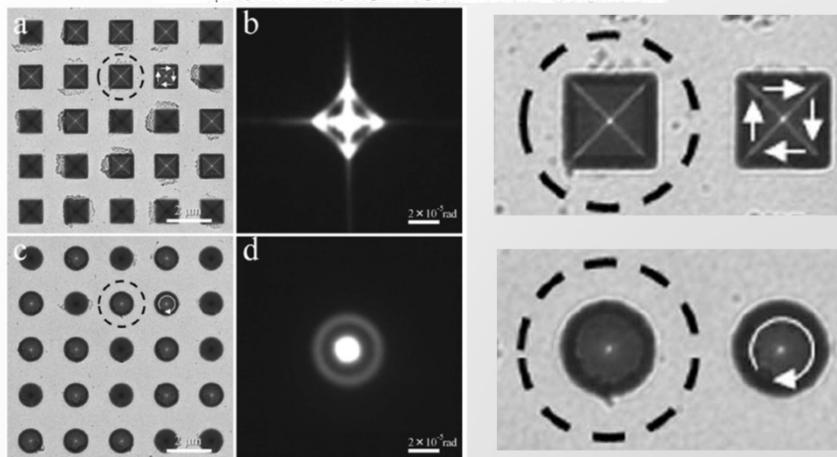
thomas.lagrange@epfl.ch • www.epfl.ch • lumes.epfl.ch • +41 (0)21 6935861


Small Angle Electron Diffraction (SmAED)

SmAED for LTEM studies typically requires camera lengths of 50-1000m

$$\theta_L = \frac{\lambda e B_{\perp} t}{h} \sim 1 - 100 \mu\text{rad}$$

SmAED

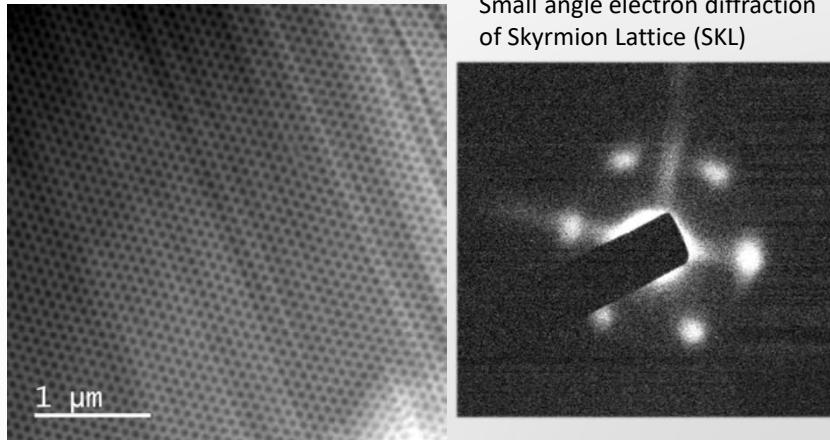

18

thomas.lagrange@epfl.ch • www.epfl.ch • lumes.epfl.ch • +41 (0)21 6935861

Small Angle Electron Diffraction (SmAED) examples

AIP ADVANCES 2, 012195 (2012)

Small angle electron diffraction and deflection


T. Koyama,¹ K. Takayanagi,² Y. Togawa,^{2,3,a} S. Mori,^{1,3} and K. Harada^{1,4}

19

thomas.lagrange@epfl.ch • www.epfl.ch • lumes.epfl.ch • +41 (0)21 6935861

Example: Skyrmiion lattice

Small angle electron diffraction
of Skyrmiion Lattice (SKL)

20

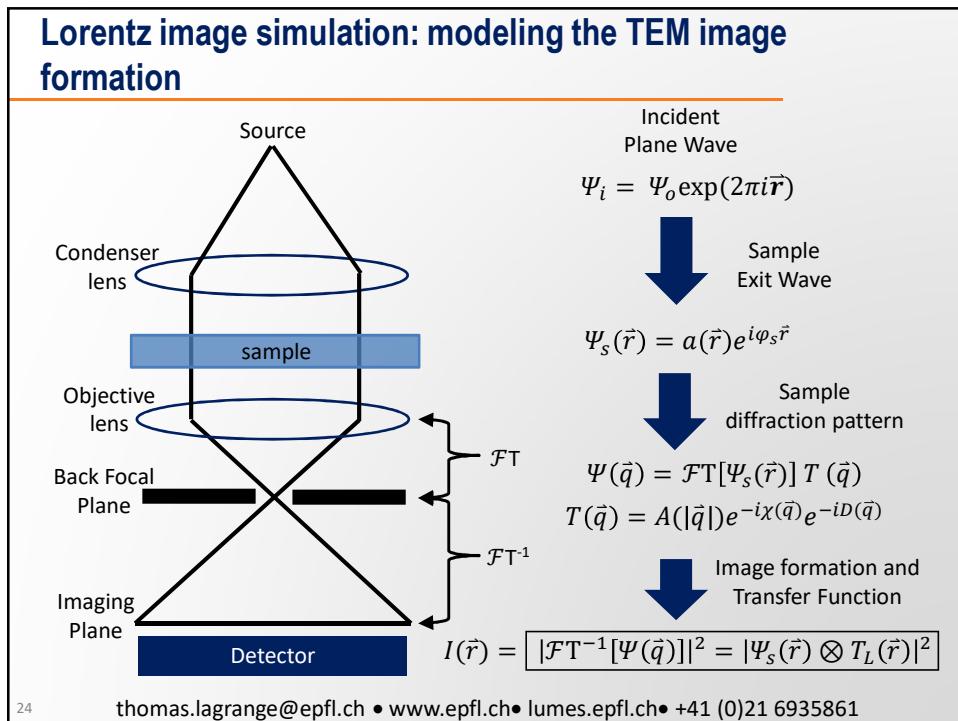
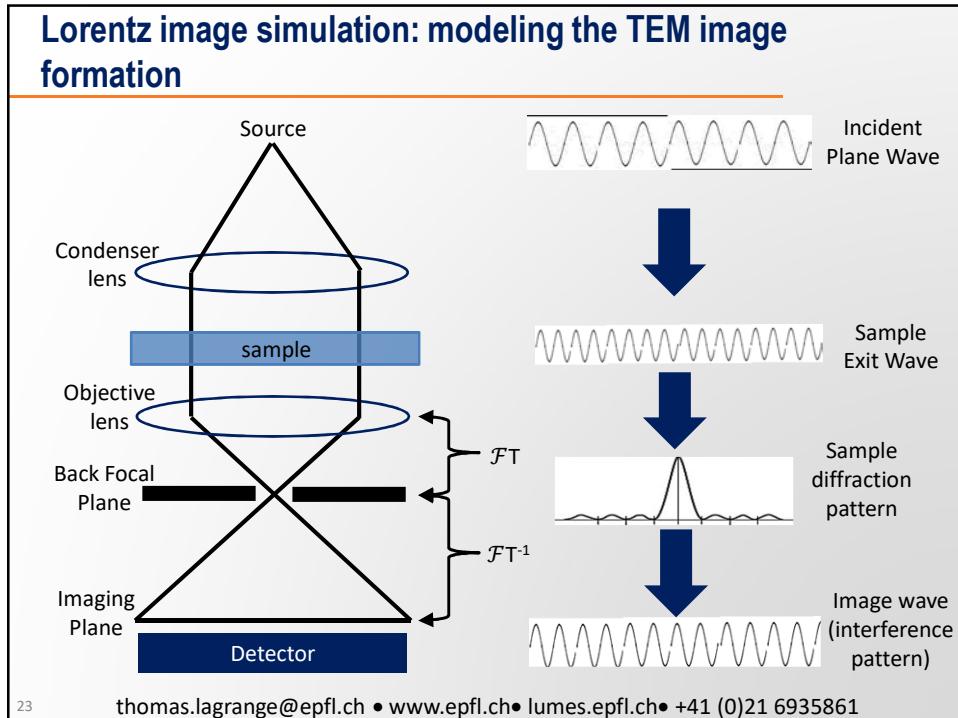
thomas.lagrange@epfl.ch • www.epfl.ch • lumes.epfl.ch • +41 (0)21 6935861

QUESTIONS?

21

thomas.lagrange@epfl.ch • www.epfl.ch • lumes.epfl.ch • +41 (0)21 6935861

Outline:

Lorentz microscopy has been used extensively for the past 40 years to study magnetic domain structure and magnetization reversal mechanisms in magnetic thin films and elements. Here, a brief introduction to standard image modes in TEM and the theory involved is presented. The second half of lectures is devoted to discussing how the sample's phase shift and magnetic properties can be quantified from the LTEM observations.

- 1) Lorentz Transmission Electron Microscopy (LTEM)
 - A. Lorentz Force and LTEM Imaging modes
 - B. Fresnel Mode
 - C. Foucault Mode
 - D. Examples
- 2) Simulations and quantitative analysis
 - A. Modeling magnetic images in a real microscope
 - B. Transport of Intensity Equations (TIE)
 - C. Examples

22

thomas.lagrange@epfl.ch • www.epfl.ch • lumes.epfl.ch • +41 (0)21 6935861

Lorentz image simulation: Transfer function

$$\Psi_s(\vec{r}) = a(\vec{r})e^{i\varphi_s \vec{r}}$$

The exit wave of the sample, which has the phase shifts associated with both the sample's electrostatic and magnetic potentials

$$\Psi(\vec{q}) = \mathcal{F}T[\Psi_s(\vec{r})] T(\vec{q})$$

Abbe's equation can be used to approximate imaging (Fourier transform) that is convolved with the microscope transfer function.

$$T_L(\vec{q}) = A[|\vec{q}|]e^{-i\chi(\vec{q})}e^{-iD(\vec{q})}$$

$A[|\vec{q}|]$ is the aperture function (1 inside and 0 outside). Radius and position are varied for Foucault images simulations

$$\chi(\vec{q}) = \pi\lambda\Delta f |\vec{q}|^2 + 1/2\pi C_s \lambda^3 |\vec{q}|^4$$

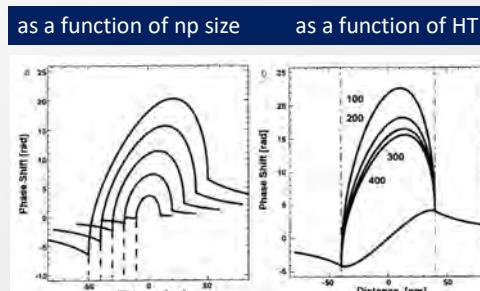
$\chi(\vec{q})$ is the phase function corresponding to the defocus and spherical aberration of the objective lens.

$$D(\vec{q}) \approx \frac{(\pi\theta_D \Delta f)^2}{\ln 2} |\vec{q}|^2$$

$D(\vec{q})$ is the damping envelope of the wave function due to the beam divergence and the finite stability of the lenses and accelerator electronics.

25

thomas.lagrange@epfl.ch • www.epfl.ch • lumes.epfl.ch • +41 (0)21 6935861


Example: modeling the LTEM Fresnel mode contrast developed by embedded magnetic particles of differing sizes

$$\Delta\varphi_m = \frac{-2\pi e}{h} \oint_l \vec{A} dl = \frac{-2\pi e}{h} \int_S \vec{B} dS$$

$$\Delta\varphi_{m,x} = \frac{2\pi e t}{h} B_y \Delta x$$

$$\Delta\varphi_{m,y} = \frac{2\pi e t}{h} B_x \Delta y$$

Example: J. Dooley and M. De Graef, Micron 28, (1997) p.371

For spherical magnetic particles with radius (a), $\vec{A}(r) = \frac{4\pi a^3}{3(r^3 > a^3)} M_o [y(\hat{x} \sin \theta + \hat{z} \cos \theta) - z\hat{y}]$

Assuming that normalized coordinates (e.g., $\bar{r} = \frac{r}{a}$, $\bar{y} = \frac{y}{a}$), using $M_o = \frac{3}{8\pi B}$, and $\beta(r, q) = [1 - (r^2 > 1)]^q$

$$\text{Magnetic phase shift} = \frac{\varphi_m(r_\perp)}{B_\perp a^2} = \left[\frac{2\pi e \bar{y}}{h \bar{r}^2} \left\{ 1 - \beta \left(\bar{r}, \frac{3}{2} \right) \right\} \right]$$

$$\text{Electrostatic phase shift} = \frac{\varphi_e(r_\perp)}{\sigma_E e U_i a} = \left[2 \left\{ \frac{V_m}{V_i} \bar{t} - \beta \left(\bar{r}, \frac{1}{2} \right) \right\} \right]$$

26

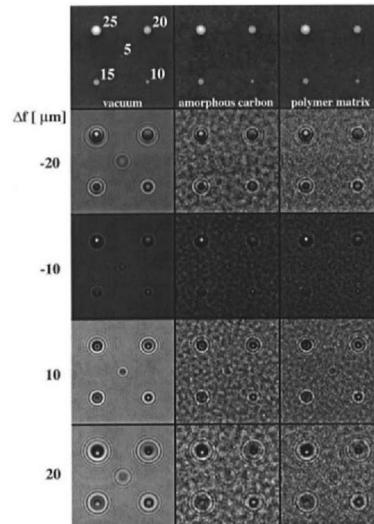
thomas.lagrange@epfl.ch • www.epfl.ch • lumes.epfl.ch • +41 (0)21 6935861

Example: modeling the LTEM Fresnel mode contrast developed by embedded magnetic particles of differing sizes

For embedded magnetic nanoparticles that are strong phase objects, the exit wave follows,

$$\Psi_s(\vec{r}) = a(\vec{r}) e^{i[B_\perp a^2 \phi_m(r_\perp) + \sigma_E e U_i a \phi_e(r_\perp)]}$$

Imaging of sample information by the microscope lens system can be modeled as,


$$\Psi(\vec{q}) = \mathcal{F}[\Psi_s(\vec{r})] T(\vec{q})$$

The transfer function associated with LTEM mode can modeled as,

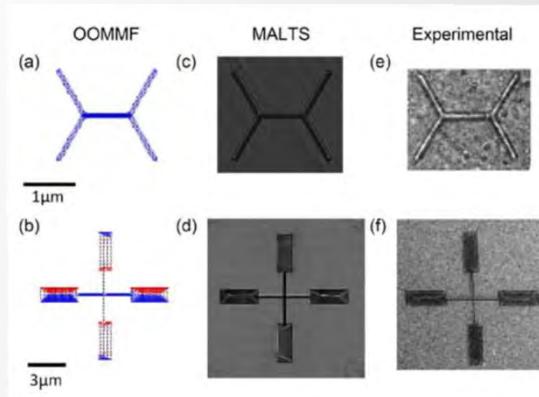
$$T_L(\vec{q}) = A[|\vec{q}|] e^{-i\pi\lambda\Delta f|\vec{q}|^2} e^{-\frac{(\pi\theta_D\Delta f)^2}{\ln 2}|\vec{q}|^2}$$

The intensity on the detector plane is the convolution of sample exit wave function and the microscope transfer function

$$I(\vec{r}) = |\mathcal{F}T^{-1}[\Psi(\vec{q})]|^2 = |\Psi_s(\vec{r}) \otimes T_L(\vec{r})|^2$$

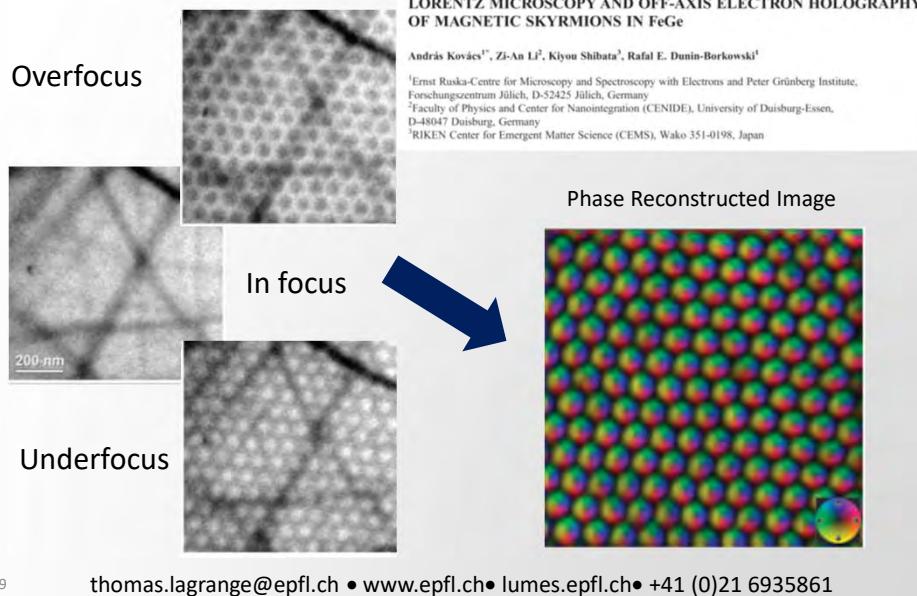
De Graef, M. (1999). Lorentz microscopy and electron holography of nanocrystalline magnetic materials. *Advanced Hard and Soft Magnetic Materials*. M. Coey, L. H. Lewis, B. M. Ma et al. Warrendale, Materials Research Society, 577: 519-530.

27 thomas.lagrange@epfl.ch • www.epfl.ch • lumes.epfl.ch • +41 (0)21 6935861


MALTS: Micromagnetic Analysis to Lorentz TEM Simulation

IEEE TRANSACTIONS ON MAGNETICS, VOL. 48, NO. 8, AUGUST 2012

4795


MALTS: A Tool to Simulate Lorentz Transmission Electron Microscopy From Micromagnetic Simulations

Stephanie K. Walton¹, Katharina Zeissler¹, Will R. Branford^{1,2}, and Solveig Felton^{2,3}

28 thomas.lagrange@epfl.ch • www.epfl.ch • lumes.epfl.ch • +41 (0)21 6935861

How do we model LTEM contrast and be more quantitative about the magnetic phase shifts due to in-plane B

Transport of Intensity Equations (TIE)

For LTEM mode with small deflection angles (i.e., $|\vec{q}_\perp|$) and small defocus (Δf), the phase function ($\chi(\vec{q})$) and damping envelope ($D(\vec{q})$) can be written in terms of z and Taylor series expansion of the transfer function (truncating at the quadratic term)

$$\Psi_q(\vec{q}_\perp) = \mathcal{FT}[\Psi(\vec{r}_\perp)](1 - z|\vec{q}_\perp|^2)$$

$$z = iz_i + z_r, \quad z_i = \pi\lambda\Delta f \quad \text{and} \quad z_r = \frac{(\pi\theta_D\Delta f)^2}{\ln 2}$$

The wave function on the image plane (inverse \mathcal{FT}) can be written in this general form,

$$\Psi = ae^{i\varphi} - z\mathcal{FT}^{-1}[\mathcal{FT}(ae^{i\varphi})q^2] \quad \text{and} \quad \mathcal{FT}(ae^{i\varphi}) = f(\vec{q}_\perp)$$

$$\mathcal{FT}^{-1}[\mathcal{FT}(ae^{i\varphi})q^2] = \frac{-1}{4\pi^2} \iint f(\vec{q}_\perp) \nabla^2 e^{i2\pi\vec{q}_\perp \cdot \vec{r}_\perp} d\vec{q}_\perp = \frac{-1}{4\pi^2} \nabla^2 [ae^{i\varphi}]$$

$$\Psi = ae^{i\varphi} + \frac{z}{4\pi^2} \nabla^2 [ae^{i\varphi}]$$

The intensity on the detector plane is the convolution of the sample exit wave function and the microscope transfer function. For uniform illumination ($\nabla^2 a = 0$)

$$I = \boxed{a^2 - \frac{\lambda\Delta f}{2\pi} \nabla \cdot (a^2 \nabla \varphi) + \frac{(\theta_D\Delta f)^2}{\ln 2} [a \nabla^2 a - a^2 (\nabla \varphi)^2]}$$

Transport of Intensity Equations (TIE)

Let's consider 3 cases, infocus (i.e, $I(\vec{r}_\perp, 0) = a^2$), overfocus and underfocus with the same magnitude $|\Delta f|$

Underfocus $I(\vec{r}_\perp, -|\Delta f|)$

$$= I(\vec{r}_\perp, 0) - \frac{\lambda|\Delta f|}{2\pi} \nabla \cdot (I(\vec{r}_\perp, 0) \nabla \varphi) + \frac{(\theta_D|\Delta f|)^2}{ln2} \left[\sqrt{I(\vec{r}_\perp, 0)} \nabla^2 \sqrt{I(\vec{r}_\perp, 0)} - I(\vec{r}_\perp, 0) (\nabla \varphi)^2 \right]$$

and for overfocus $I(\vec{r}_\perp, +|\Delta f|)$

$$= I(\vec{r}_\perp, 0) + \frac{\lambda|\Delta f|}{2\pi} \nabla \cdot (I(\vec{r}_\perp, 0) \nabla \varphi) + \frac{(\theta_D|\Delta f|)^2}{ln2} \left[\sqrt{I(\vec{r}_\perp, 0)} \nabla^2 \sqrt{I(\vec{r}_\perp, 0)} - I(\vec{r}_\perp, 0) (\nabla \varphi)^2 \right]$$

Subtracting the second equation from the first and rearranging the terms,

$$-\frac{2\pi}{\lambda} \frac{(I(\vec{r}_\perp, |\Delta f|) - I(\vec{r}_\perp, -|\Delta f|))}{2|\Delta f|} = \nabla \cdot [I(\vec{r}_\perp, 0) \nabla \varphi]$$

If we take the limit in a vanishingly small defocus, we arrive at the so-called generalized form of the Transport of Intensity Equation (TIE)

$$\nabla \cdot [I(\vec{r}_\perp, 0) \nabla \varphi] = \nabla^2 \Psi = -\frac{2\pi}{\lambda} \frac{\partial I(\vec{r}_\perp, 0)}{\partial z}$$

thomas.lagrange@epfl.ch • www.epfl.ch • lumes.epfl.ch • +41 (0)21 6935861

Simplification of the TIE equation

The Transport of Intensity Equation (TIE)

$$\nabla (I(\vec{r}_\perp, 0) \nabla \varphi) = -\frac{2\pi}{\lambda} \frac{\partial I}{\partial z}$$

If the in-focus intensity is constant (I_o) associated with the sample, then,

$$I_o \nabla^2 \varphi = -\frac{2\pi}{\lambda} \frac{\partial I}{\partial z}$$

Implementing a 2-D Fourier transform of the images,

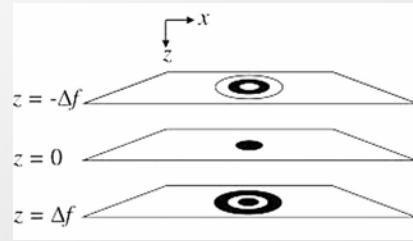
$$-4\pi^2 q^2 \varphi = -\frac{2\pi}{\lambda I_o} \mathcal{FT} \left[\frac{\partial I}{\partial z} \right]$$

rewriting the equation

$$\varphi \approx \frac{1}{2\pi q^2 \lambda I_o} \mathcal{FT} \left[\frac{I(\Delta f) - I(-\Delta f)}{2\Delta f} \right]$$

32

thomas.lagrange@epfl.ch • www.epfl.ch • lumes.epfl.ch • +41 (0)21 6935861

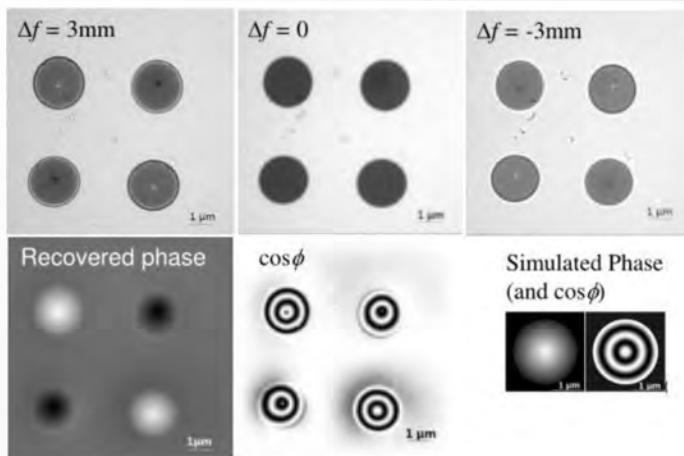

Experimental approach for calculating the phase

$$\varphi \approx \frac{1}{2\pi q^2 \lambda I_o} \mathcal{FT} \left[\frac{I(\Delta f) - I(-\Delta f)}{2\Delta f} \right]$$

$$\nabla \Psi = I(\vec{r}_\perp, 0) \nabla \varphi$$

$$\nabla \cdot \nabla \Psi = \nabla^2 \Psi = -\frac{2\pi}{\lambda} \frac{\partial I}{\partial z}$$

$$\nabla \varphi = \frac{\nabla \Psi}{I(\vec{r}_\perp, 0)} = -\frac{2\pi e}{h} [\vec{B}(r_\perp) \times \hat{n}] t(r_\perp)$$

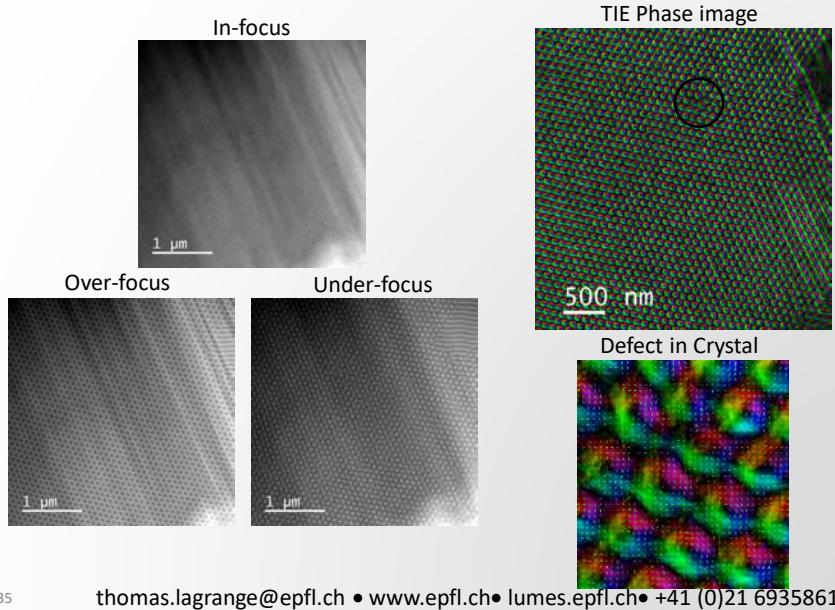


To calculate the phase, images of the same region are taken at overfocus (Δf), in-focus ($\Delta f = 0$), and underfocus ($-\Delta f$). Subtract the overfocus and underfocus, take the Fourier transform, and then divide reciprocal q^2 and constants (in-focus image I_o). The phase is obtained by the inverse \mathcal{FT}^{-1} of this quantity.

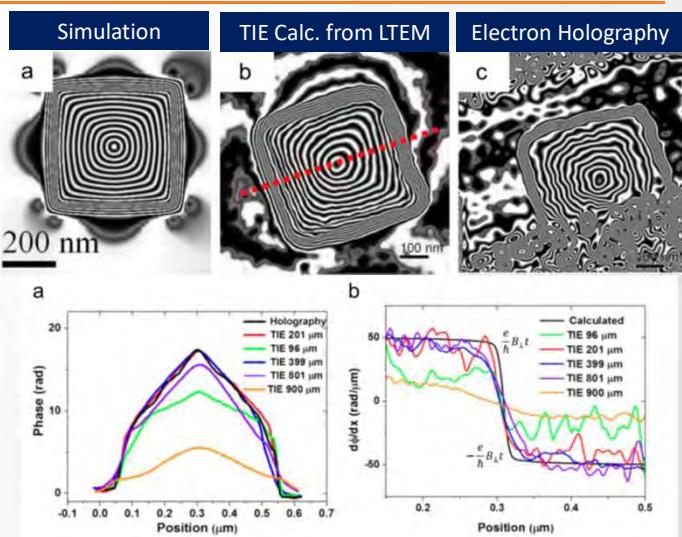
33

thomas.lagrange@epfl.ch • www.epfl.ch • lumes.epfl.ch • +41 (0)21 6935861

Example: permalloy disks deposited on SiN membrane



It is convenient to display the calculated phase images as “cosine of the phase” contour map in which there is a phase shift of 2π between the dark lines that resembles the magnetic field lines.


34

thomas.lagrange@epfl.ch • www.epfl.ch • lumes.epfl.ch • +41 (0)21 6935861

Example: TIE of Skyrmions in FeGe (unpublished results)

Comparison with electron holography

A. Kohn, A. Habibi, M. Mayo, Ultramicroscopy 160 (2016) 44–56

36 thomas.lagrange@epfl.ch • www.epfl.ch• lumes.epfl.ch• +41 (0)21 6935861

Resolution, optimal defocus, and accuracy of calculated phase using TIE

Phase Measurement in Electron Microscopy Using the Transport of Intensity Equation

Kazuo Ishizuka, and Brendan Allman*
HREM Research Inc, *IATIA Ltd

$$\frac{(\pi\lambda\Delta f q_{max}^2)}{3!} \leq c \ll 1, c \sim 0.25$$

Table 1. Upper limits of defocus for the three-image case

d _{min} (nm)	$\pi\lambda(2\Delta f)$	100 kV	200 kV	400 kV
0.14	4.90 x10 ⁻²	4.2 nm	6.2 nm	9.5 nm
0.2	9.80x 10 ⁻²	8.4 nm	19.0 nm	19.0 nm
1	2.45	211 nm	311 nm	474 nm
10	2.45 x10 ²	21.1 μ m	31.1 μ m	47.4 μ m
100	2.45 x10 ⁴	2.11 mm	3.11 mm	4.74 mm

37

thomas.lagrange@epfl.ch • www.epfl.ch• lumes.epfl.ch• +41 (0)21 6935861

QUESTIONS?

38

thomas.lagrange@epfl.ch • www.epfl.ch• lumes.epfl.ch• +41 (0)21 6935861

Bibliography

1. Budruk, A., et al., *In situ lorentz TEM magnetization study of a Ni–Mn–Ga ferromagnetic shape memory alloy*. *Acta Materialia*, 2011. **59**(12): p. 4895-4906.
2. Chapman, J.N., A.B. Johnston, and L.J. Heyderman, *Coherent Foucault imaging: A method for imaging magnetic domain structures in thin films*. *Journal of Applied Physics*, 1994. **76**(9): p. 5349-5355.
3. De Graef, M., *Lorentz microscopy and electron holography of nanocrystalline magnetic materials*, in *Advanced Hard and Soft Magnetic Materials*, M. Coey, et al., Editors. 1999, Materials Research Society: Warrendale. p. 519-530.
4. De Graef, M., *2. Lorentz microscopy: Theoretical basis and image simulations*, in *Experimental Methods in the Physical Sciences*, M. De Graef and Y. Zhu, Editors. 2001, Academic Press. p. 27-67.
5. De Graef, M. and Y. Zhu, *Magnetic Imaging and Its Applications to Materials*. Experimental methods in the Physic Sciences, ed. R. Celotta and T. Lucatorto. Vol. 36. 2000, London, UK: Elsevier Science.
6. Dooley, J. and M. De Graef, *Energy filtered magnetic induction mapping*. *Micron*, 1997. **28**(5): p. 371-380.
7. Gureyev, T.E. and K.A. Nugent, *Phase retrieval with the transport-of-intensity equation .2. Orthogonal series solution for nonuniform illumination*. *Journal of the Optical Society of America a-Optics Image Science and Vision*, 1996. **13**(8): p. 1670-1682.
8. Gureyev, T.E., A. Roberts, and K.A. Nugent, *PHASE RETRIEVAL WITH THE TRANSPORT-OF-INTENSITY EQUATION - MATRIX SOLUTION WITH USE OF ZERNIKE POLYNOMIALS*. *Journal of the Optical Society of America a-Optics Image Science and Vision*, 1995. **12**(9): p. 1932-1941.
9. Gureyev, T.E., A. Roberts, and K.A. Nugent, *PARTIALLY COHERENT FIELDS, THE TRANSPORT-OF-INTENSITY EQUATION, AND PHASE UNIQUENESS*. *Journal of the Optical Society of America a-Optics Image Science and Vision*, 1995. **12**(9): p. 1942-1946.
10. Kohn, A., A. Habibi, and M. Mayo, *Experimental evaluation of the 'transport-of-intensity' equation for magnetic phase reconstruction in Lorentz transmission electron microscopy*. *Ultramicroscopy*, 2016. **160**: p. 44-56.

39

thomas.lagrange@epfl.ch • www.epfl.ch• lumes.epfl.ch• +41 (0)21 6935861

Bibliography

11. Kotani, A., et al., *Lorentz microscopy and small-angle electron diffraction study of magnetic textures in La_{1-x}Sr_xMnO₃ (0.15 < x < 0.30): The role of magnetic anisotropy*. *Physical Review B*, 2016. **94**(2): p. 7.
12. Koyama, T., et al., *Small angle electron diffraction and deflection*. *AIP Advances*, 2012. **2**.
13. McVitie, S. and M. Cushley, *Quantitative Fresnel Lorentz microscopy and the transport of intensity equation*. *Ultramicroscopy*, 2006. **106**(4-5): p. 423-431.
14. Nakajima, H., et al., *Foucault imaging and small-angle electron diffraction in controlled external magnetic fields*. *Microscopy*, 2016. **65**(6): p. 473-478.
15. Nakajima, H., et al., *Foucault optical system by using a nondedicated conventional TEM*. *Surface and Interface Analysis*, 2016. **48**(11): p. 1166-1168.
16. Paganin, D. and K.A. Nugent, *Noninterferometric phase imaging with partially coherent light*. *Physical Review Letters*, 1998. **80**(12): p. 2586-2589.
17. Phatak, C., A.K. Petford-Long, and M. De Graef, *Recent advances in Lorentz microscopy*. *Current Opinion in Solid State and Materials Science*, 2016. **20**(2): p. 107-114.
18. Portier, X., et al., *Lorentz transmission electron microscopy on NiFe/Cu/Co/NiFe/MnNi active spin valve elements*. *Applied Physics Letters*, 1997. **71**(14): p. 2032-2034.
19. Taniguchi, Y., H. Matsumoto, and K. Harada, *Foucault imaging by using non-dedicated transmission electron microscope*. *Applied Physics Letters*, 2012. **101**(9): p. 4.
20. Volkov, V.V. and Y. Zhu, *Magnetic structure and microstructure of die-upset hard magnets RE_{13.75}Fe_{80.25}B₆ (RE = Nd, Pr): A possible origin of high coercivity*. *Journal of Applied Physics*, 1999. **85**(6): p. 3254-3263.
21. Zhang, S., et al., *Creation of a thermally assisted skyrmion lattice in Pt/Co/Ta multilayer films*. *Applied Physics Letters*, 2018. **113**(19): p. 192403.

40

thomas.lagrange@epfl.ch • www.epfl.ch• lumes.epfl.ch• +41 (0)21 6935861

Practical considerations for doing TIE analysis

41

thomas.lagrange@epfl.ch • www.epfl.ch • lumes.epfl.ch • +41 (0)21 6935861

Difficulties and Errors with TIE phase retrieval: Noise

To understand noise effects on the phase recovery, consider a wave with no intensity modulation but has a phase distribution

$$k \frac{\partial \rho}{\partial z} = -\nabla^2 \varphi$$

Implementing Fourier theory then gives,

$$\frac{2\pi}{\lambda} \mathcal{F}T \left[\frac{\partial \rho}{\partial z} \right] = |q_{\perp}|^2$$

Where q_{\perp} is the spatial frequency, the solution phase follows,

$$\varphi = \frac{2\pi}{\lambda} \mathcal{F}T^{-1} \left[\frac{1}{|q_{\perp}|^2} \mathcal{F}T \left[\frac{\partial \rho}{\partial z} \right] \right]$$

Thus, the phase recover from input data involves the numerical differentiation of experimental data, noise sensitive operation. However, phase recovery with TIE is relatively insensitive to noise even at levels around 10%

Thus, to reduce noise effects, a larger defocus can be used at the expense of reduced spatial resolution

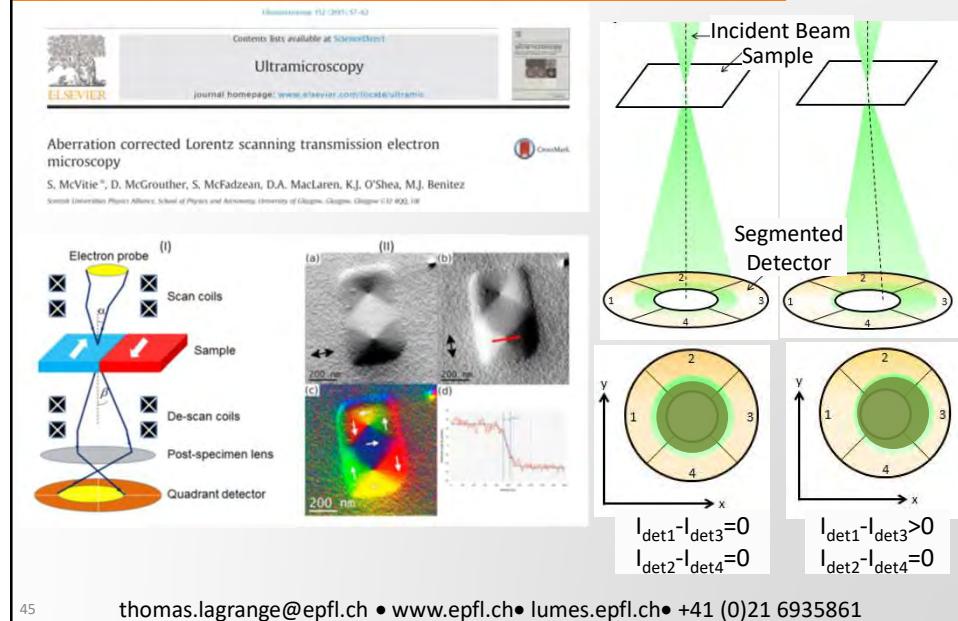
42

thomas.lagrange@epfl.ch • www.epfl.ch • lumes.epfl.ch • +41 (0)21 6935861

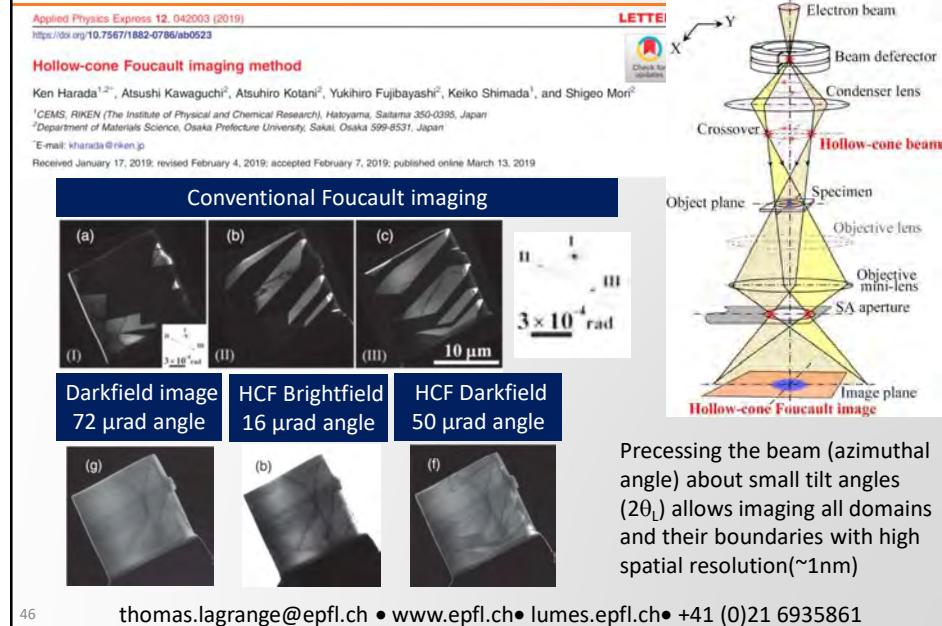
Difficulties and Errors with TIE phase retrieval: Systematic errors, e.g., magnification, image shifts, image rotation

- Image shifts
 - Suppose an electron plane wave traveling at an angle, θ , can be described by the phase gradient, $\varphi' = \frac{2\pi}{\lambda} \sin \theta$
 - If an image (sample) shifts by Δ causing defocus error of δz , then $\varphi' = \frac{2\pi}{\lambda} \frac{\Delta}{\delta z}$
 - The acceptable misalignment depends on the extent of phase excursion (size) required to observe a feature.
- Magnification errors
 - A difference of 1% in magnification can cause significant errors in the recovered phases.
 - In an astigmatic system, the magnification can differ with transverse direction, and defocus error-induced magnification changes result in an additional cylindrical phase across the image
- Image rotation
 - For phase distribution of $\phi = n\theta$, where θ is the azimuthal angle on intensity distribution, the phase distribution undergoes a differential rotation separated by differential distance.
 - A small amount of rotation can create local phase gradients and distortion artifacts.
- Image Normalization
 - Incorrect image normalization on the order of <1% can even cause dramatic effects on the recovered phase and image artifacts

43


thomas.lagrange@epfl.ch • www.epfl.ch • lumes.epfl.ch • +41 (0)21 6935861

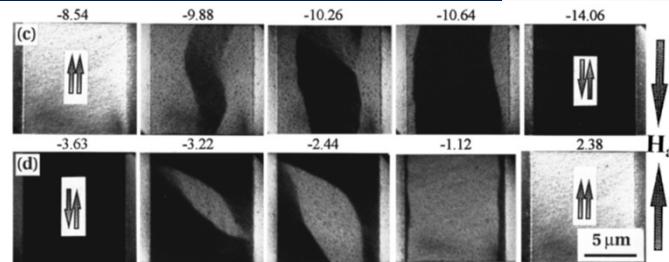
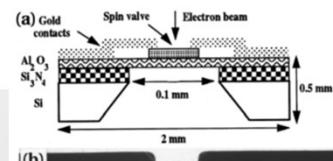
Other techniques and examples
for imaging magnetic structures
in the TEM


44

thomas.lagrange@epfl.ch • www.epfl.ch • lumes.epfl.ch • +41 (0)21 6935861

Lorentz Scanning TEM and Differential Phase Contrast (DPC)

Examples: Hollow Cone Foucault imaging

Foucault mode example: in-situ measurements in spintronics

Lorentz transmission electron microscopy on NiFe/Cu/Co/NiFe/MnNi active spin valve elements

X. Portier,¹ A. K. Petford-Long, and R. C. Doole
 Department of Materials, University of Oxford, Oxford OX1 3PH, United Kingdom
 T. C. Anthony and J. A. Brug
 Hewlett-Packard Laboratories, Palo Alto, California, 94304

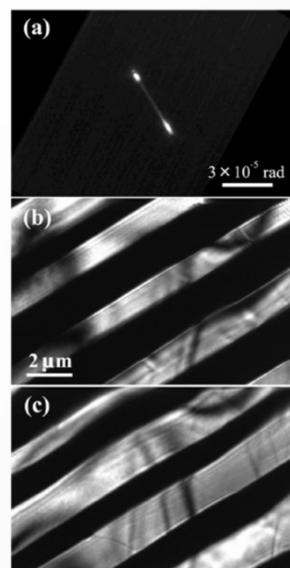
They observed the magnetic domain structure and made simultaneous magnetoresistance measurements under an applied, controlled field and current in which they correlated changes in the domains to GMR (giant magnetoresistance).

Applied magnetic field in Oersted
 $1\text{Oe} = 0.1\text{ mT}$

Current density
 $1.5 \times 10^6 \text{ A cm}^{-2}$

47

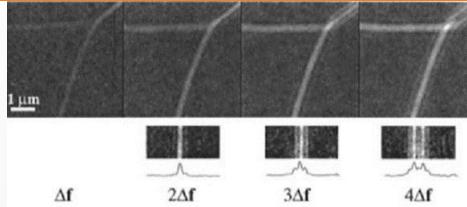
thomas.lagrange@epfl.ch • www.epfl.ch • lumes.epfl.ch • +41 (0)21 6935861


Example: Combining LTEM imaging modes

APPLIED PHYSICS LETTERS 101, 093101 (2012)

Foucault imaging by using non-dedicated transmission electron microscope

Yoshitumi Taniguchi (谷口洋史),¹ Hiroaki Matsumoto (松本弘昭),²
 and Ken Harada (原田研)^{3,4,5}
¹Science and Medical Systems Business Group, Hitachi High-Tech Technologies Corp., Ichige, Hitachinaka,
 Ibaraki 312-8504, Japan
²Corporate Manufacturing Strategy Group, Hitachi High-Technologies Corp., Ichikawa-cho, Hitachinaka,
 Ibaraki 312-9991, Japan
³Central Research Laboratory, Hitachi Ltd., Hatoyama, Saitama 350-0395, Japan


Combining Small Angle Electron Diffraction (SmaED) with Foucault and Fresnels mode LTEM imaging provides high spatial resolution (1-10nm) and quantification of the magnetic induction vector components.

48

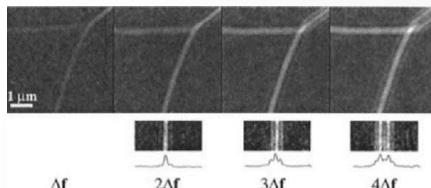
thomas.lagrange@epfl.ch • www.epfl.ch • lumes.epfl.ch • +41 (0)21 6935861

Quantum mechanical description of Lorentz TEM and Heisenberg uncertainty principle

The classical description of Lorentz deflected beam does not explain the observed fringes in the convergent "bright" domain walls

$$\varphi(y) = \frac{2\pi e B_{\perp} t y}{h}, \quad \nabla \varphi = \frac{2\pi e}{\lambda} \theta_L, \quad \Delta p_y = e t \Delta B_{\perp}$$

The magnetic phase shift relates to the magnetic flux quantum as,


$$\Delta \varphi_m(r_{\perp}) = \frac{2\pi e}{h} \Phi_m(r_{\perp}) = \pi \frac{\Phi_m(r_{\perp})}{\Phi_0}, \text{ where } \Phi_0 = \frac{h}{2e} \text{ is the flux quantum}$$

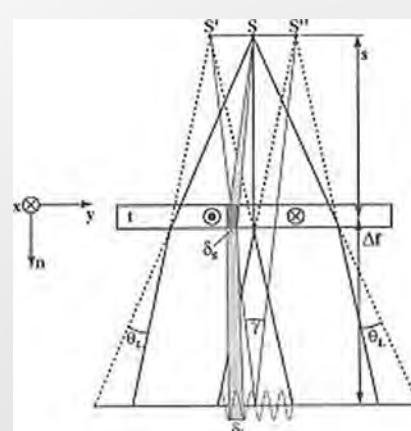
Uncertainty principle states $\Delta p_y \Delta y \geq h$

$$\frac{\Delta y \Delta B_{\perp} t}{2} = \frac{\Delta \Phi}{2} \geq \frac{h}{2e} = \Phi_0$$

thomas.lagrange@epfl.ch • www.epfl.ch • lumes.epfl.ch • +41 (0)21 6935861

Quantum mechanical description of Lorentz TEM and fringe spacings in LTEM images

The angle (γ) between 2 sources on the image plane is,


$$\gamma = 2s\theta_L/(s + \Delta f)$$

The fringe width can be described as,

$$\delta_i = \frac{\lambda}{\gamma} = \frac{h(s + \Delta f)}{2etsB_{\perp}}$$

The spatial region of the fringe at the sample plane is,

$$\Phi_0 = \delta_s t B_{\perp}$$

50

thomas.lagrange@epfl.ch • www.epfl.ch • lumes.epfl.ch • +41 (0)21 6935861

51

thomas.lagrange@epfl.ch • www.epfl.ch• lumes.epfl.ch• +41 (0)21 6935861

52

thomas.lagrange@epfl.ch • www.epfl.ch• lumes.epfl.ch• +41 (0)21 6935861

53

thomas.lagrange@epfl.ch • www.epfl.ch• lumes.epfl.ch• +41 (0)21 6935861

54

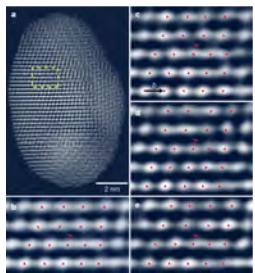
thomas.lagrange@epfl.ch • www.epfl.ch• lumes.epfl.ch• +41 (0)21 6935861

Coherent control of skyrmions

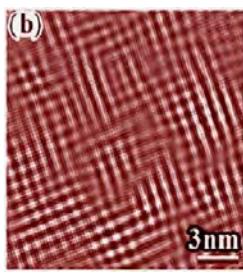
Prof. Fabrizio Carbone

Collaboration:

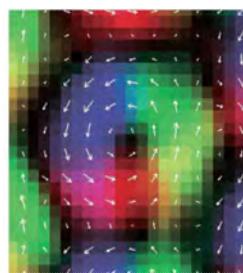
- Henrik Ronnow, Dirk Grundler, P. Huang, A. J. Kruchkov, T. Schonenberger, M. Cantoni, A. Magrez, B. Truc, I. Madan, G. Berruto, Y. Murooka and Tom Lagrange, EPFL CH
- Damien McGrouther, R. Lamb, Glasgow UK
- Thierry Giamarchi, University of Geneva
- Achim Rosch, University of Koln


Introduction

- Dynamic imaging of magnetization in modern microscopy
- Magnetic skyrmions:
 - Properties
 - Control
- Coherent control of skyrmions



Modern Electron Microscopy


Observing atoms

Nature 496 74 (2013)

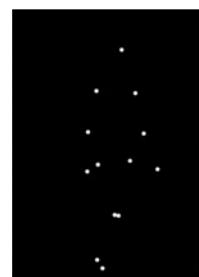
Observing charges/orbitals

Tokunaga et al., Nat. Mater. 5 (2006)

Observing spins

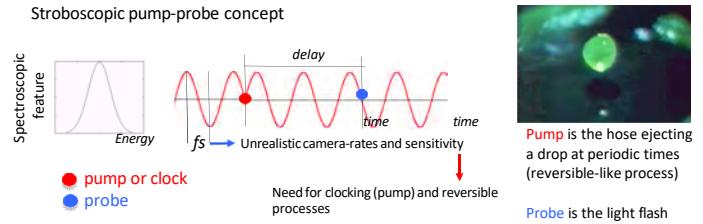
Seki et al, Science 336 (2012)

Textured ground states rule the physics of novel materials

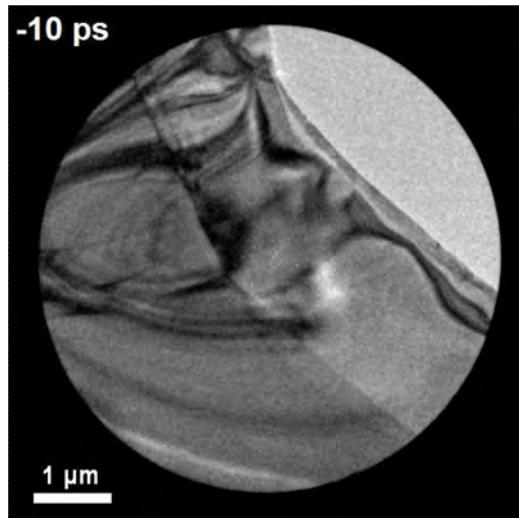

Reciprocal-space probes average over the illuminated area

dynamical imaging

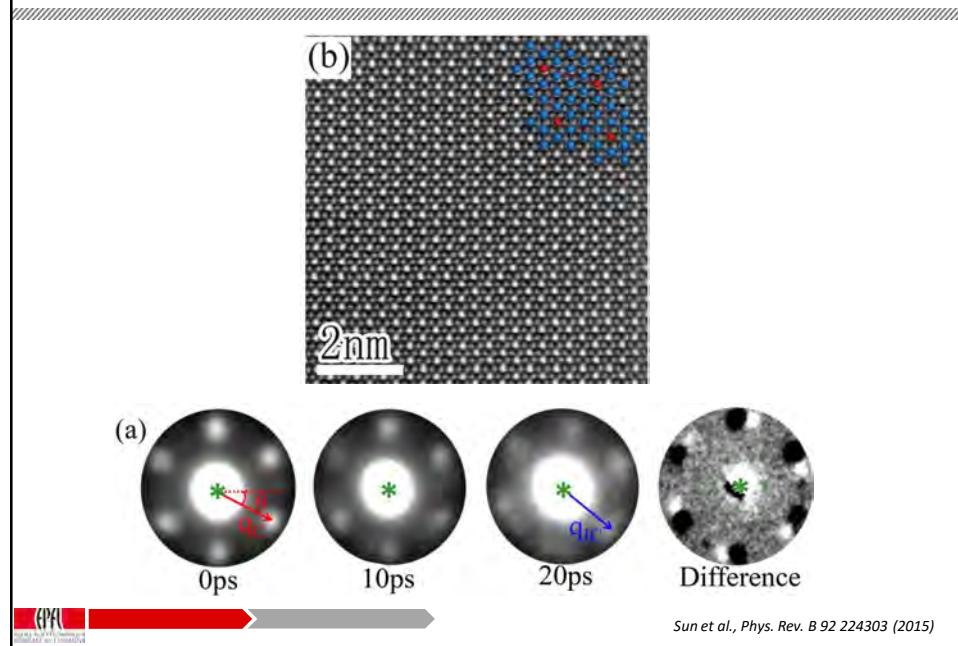
Why time-resolved experiments?


Given a distribution of
Ions
Spins or
Charges
Their dynamical evolution reveals
Their properties across phase-transitions

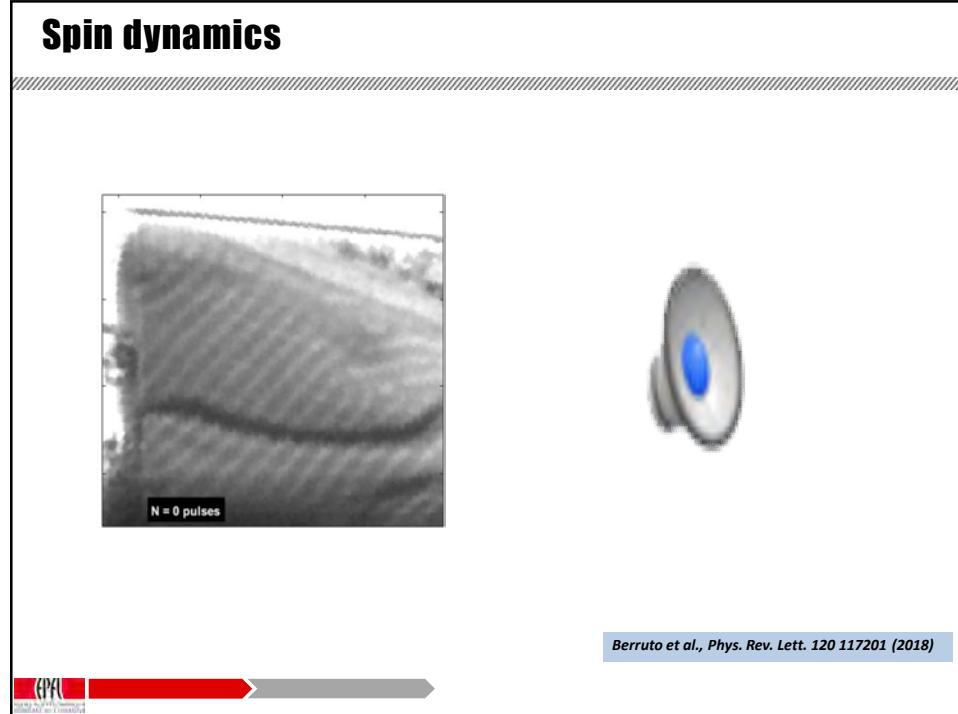
Blake R (1993) Cats perceive biological motion. *Psychological Science* 4, 54-57
<http://www.psy.vanderbilt.edu/faculty/blake/BM/BioMot.html>



The stroboscopic method


<https://www.youtube.com/watch?v=YTj4Hi1HdJQ>

Lattice dynamics



Cremons et al, Nat. Comm. 7, 11230 (2016)

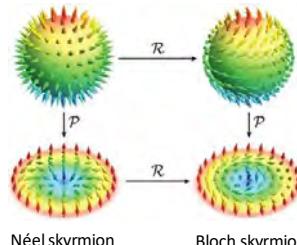
Charge dynamics

Spin dynamics

Magnetic skyrmions

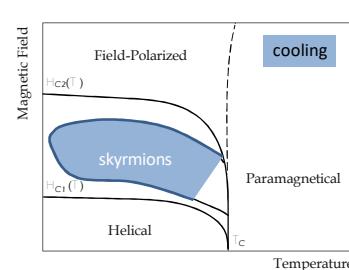
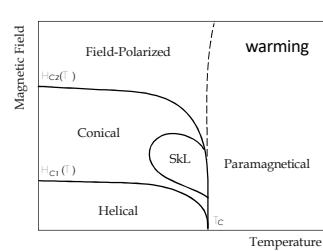
Dzyaloshinskii-Moriya Interaction: favors canting of antiparallel spins. Promotes weak ferromagnetism in antiferro background

$$\mathcal{H}_{\text{J.A.}} = \sum_{i,j} \mathbf{D}_{ij} \cdot (\mathbf{S}_i \times \mathbf{S}_j),$$

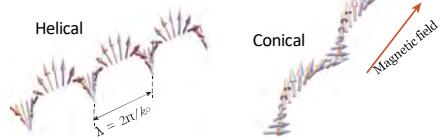

$$\mathcal{H}_{\text{HQ+?}} = -D \sum_i \mathbf{S}_i \times \mathbf{S}_{i+x} \cdot \hat{x} + \mathbf{S}_i \times \mathbf{S}_{i+y} \cdot \hat{y},$$

$$\mathcal{H}_{\text{L2H}} = -D \sum_i \mathbf{S}_i \times \mathbf{S}_{i+x} \cdot \hat{y} - \mathbf{S}_i \times \mathbf{S}_{i+y} \cdot \hat{x},$$

Topological charge of a skyrmion:



$$Q = \frac{1}{4\pi} \int dx dy \mathbf{m} \cdot \frac{\partial \mathbf{m}}{\partial x} \times \frac{\partial \mathbf{m}}{\partial y},$$

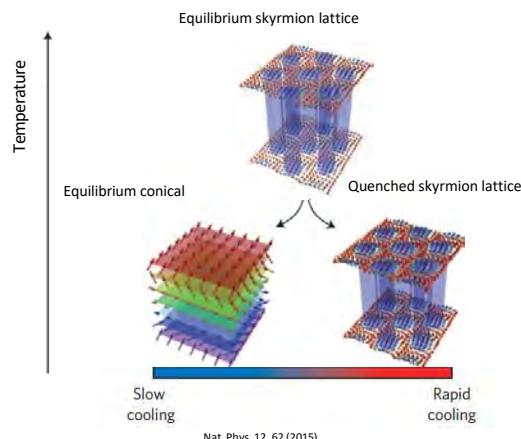
$$\mathbf{m}(x, y) = \mathbf{M}(x, y)/|\mathbf{M}|$$



Roszler, Bogdanov, Pfeiffer Nature 442 797 (2006)

Magnetic phase diagram

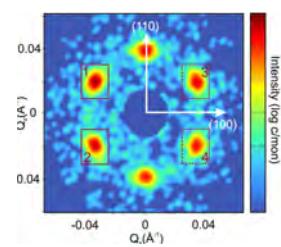
Hysteretic phase diagram

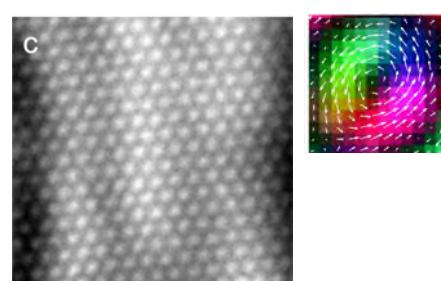


A. Krutkov PhD thesis, EPFL 2017

Topological protection vs thermodynamical fluctuations

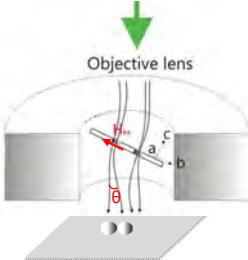
Topological magnetization patterns determined by dynamical interplay between


- Topological protection
- Thermodynamical fluctuations

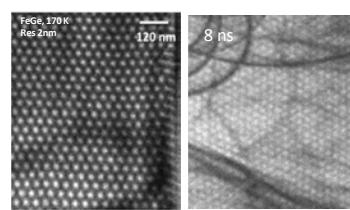

Nat. Phys. 12, 62 (2015)

How to look at skyrmions

Reciprocal space: neutron scattering



Real space: Lorentz TEM



Fs Lorentz microscopy

Electron beam

CW

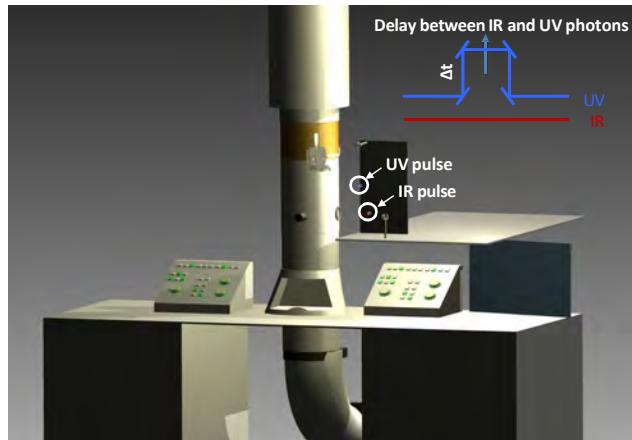
- Static images
- Camera-rate resolved movies
- Ns to fs-resolved stroboscopic movies

- $\theta \approx \mu\text{rad}$
- defocus = nm – cm
- parallel illumination: beam diameter > sample
- pulsed beam: very few e⁻

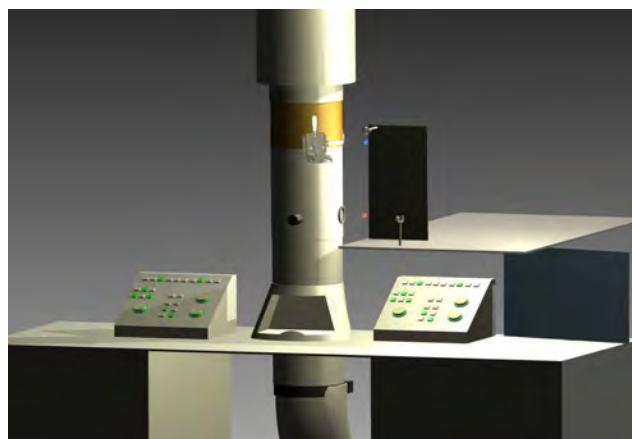
The Ultrafast TEM

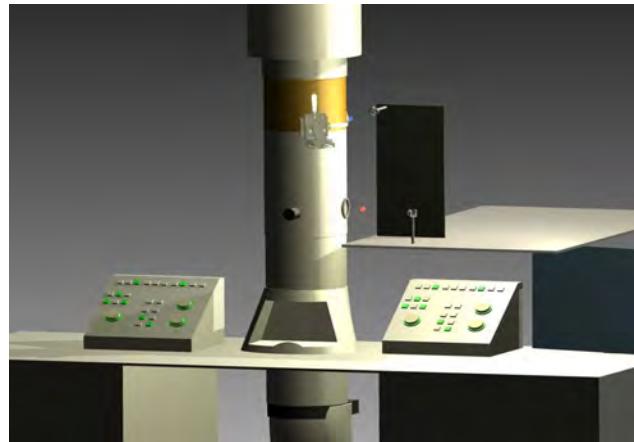
Electron gun

UV mirror
Sample
holder

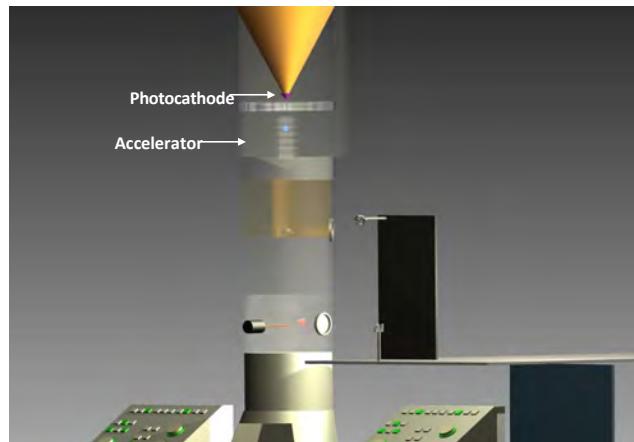

Imaging
spectrometer

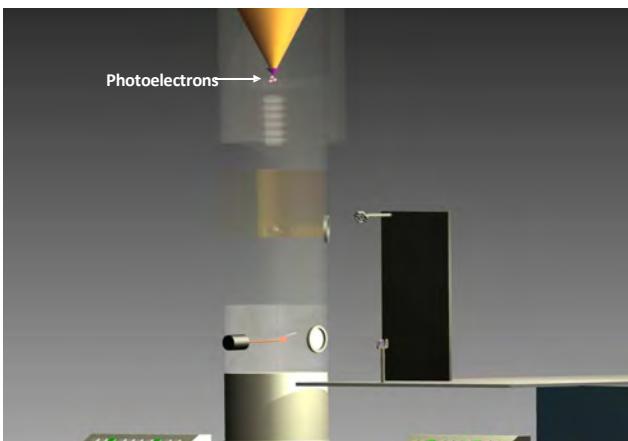
Electron
gun

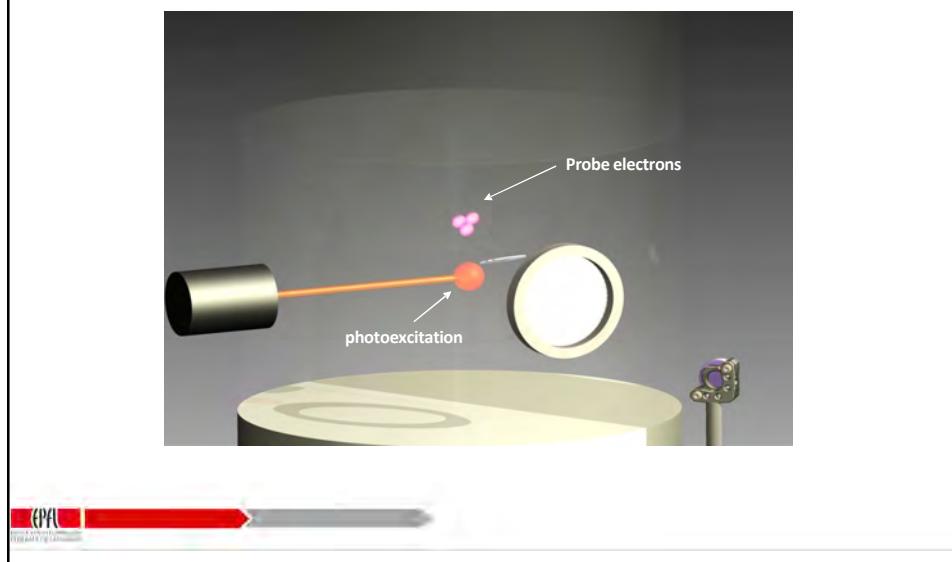

CCD
detector

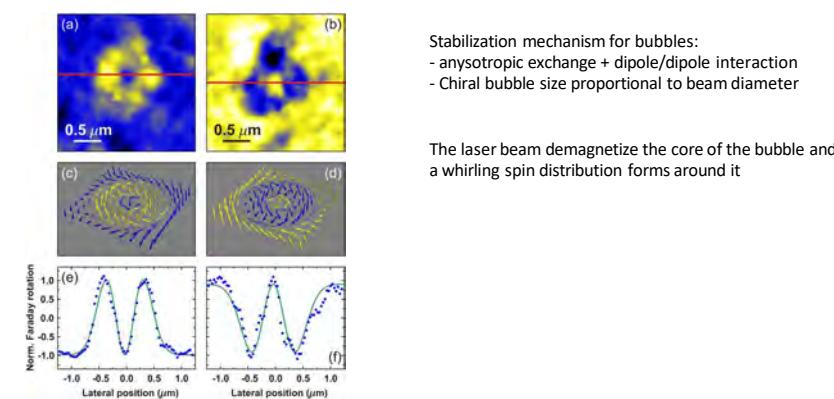

The Ultrafast TEM


The Ultrafast TEM

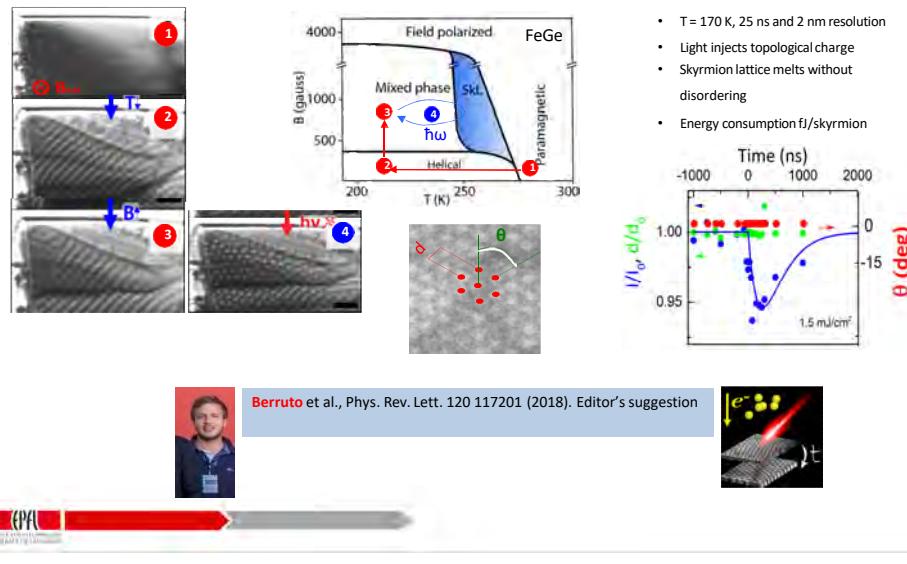

The Ultrafast TEM

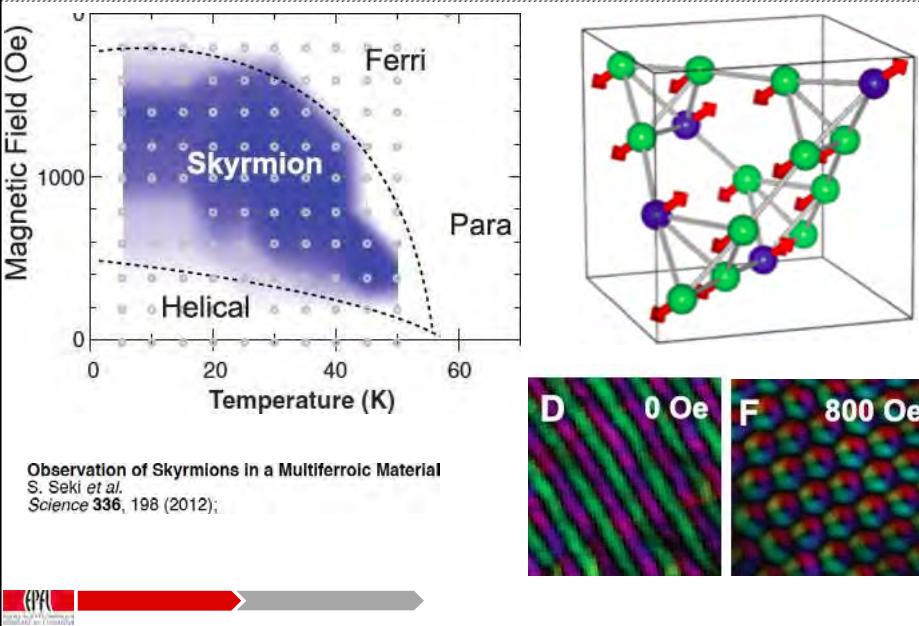

The Ultrafast TEM


The Ultrafast TEM

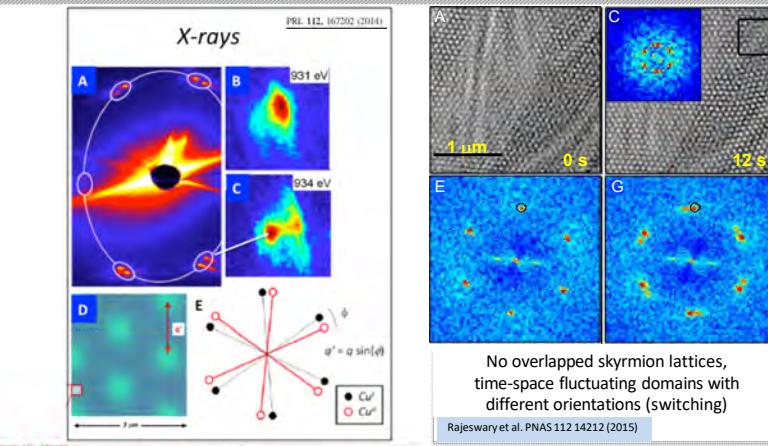

The Ultrafast TEM

The Ultrafast TEM

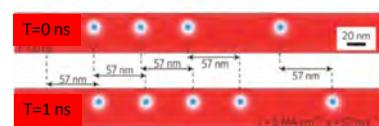

Light-control of magnetic bubbles in Co films


Finazzi et al., *Phys. Rev. Lett.* 110, 177205 (2013)

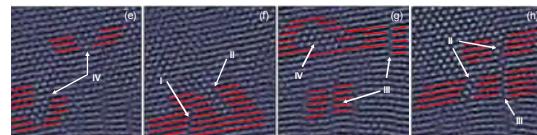
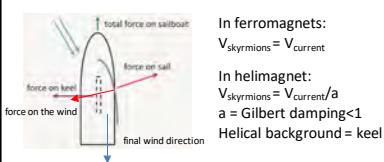
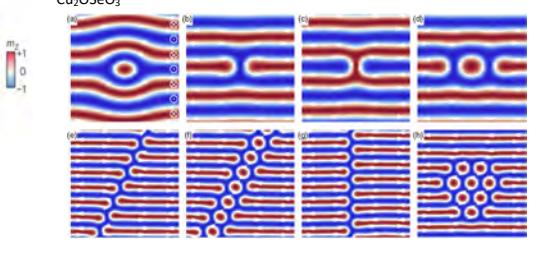
Dynamics of skyrmions in a metallic background


Controlling skyrmions: light-induced writing/erasing in a metal

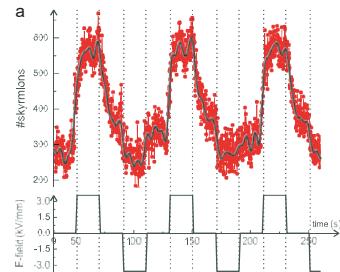
Skyrmions in Cu_2OSeO_3



Skyrmions lattice ordering properties (camera-rate)

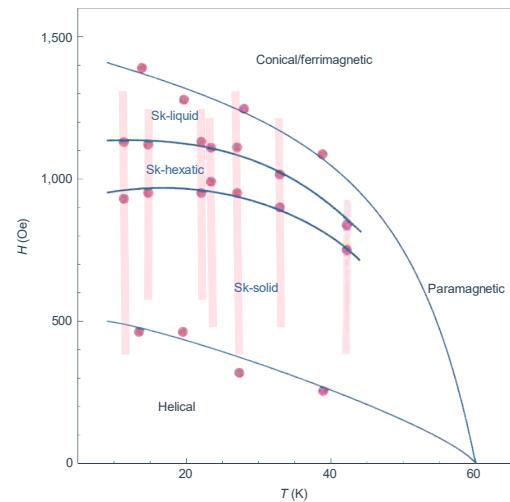
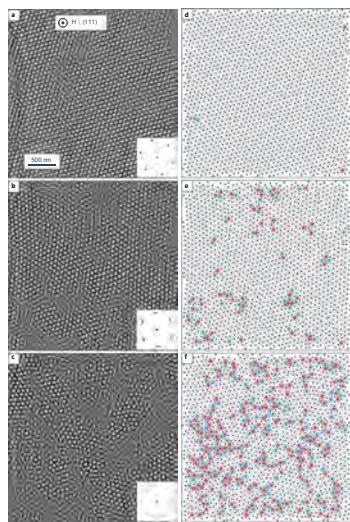
Skyrmions flowing in different background



Skyrmions motion in a ferromagnetic background (MnSi)

Skyrmions/antiskyrmions and skyrmions clusters in the helical background Cu2OSeO3

Electric field control of skyrmions

Currently limited to ms E-field pulse. Energy consumption: f /skyrmion

Huang et al., *Nanoletters* under review: arXiv:1710.09200

Discovery of the hexatic phase of the SkL

Huang et al., *Nat. Nano* 15 761 (2020)
News & Views Klau Nat. Nano

Skrymion lattice melting

Translational order parameter

$$\Psi_q \delta r \propto e^{-i\mathbf{q} \cdot \mathbf{r}}$$

Translational correlation function

$$G_0 \propto \frac{1}{6} \sum_{\langle i,j \rangle} \frac{1}{N_r} \sum_{h \in \langle i,j \rangle} \Psi_{q_i} \delta r \Psi_{q_j}^* \delta r$$

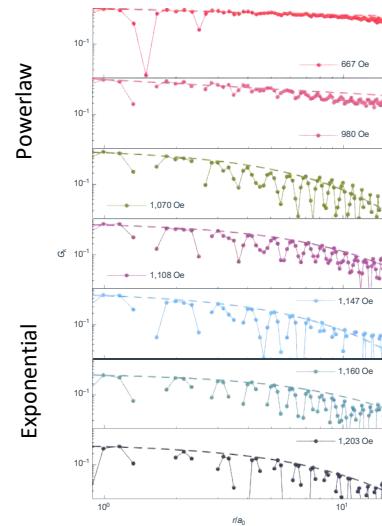
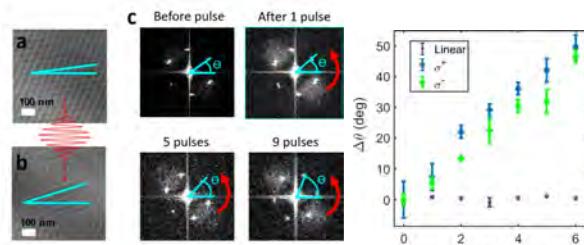



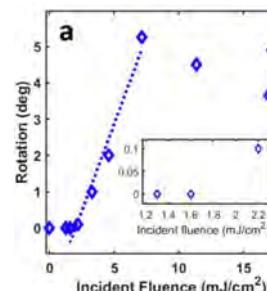
Figure 11

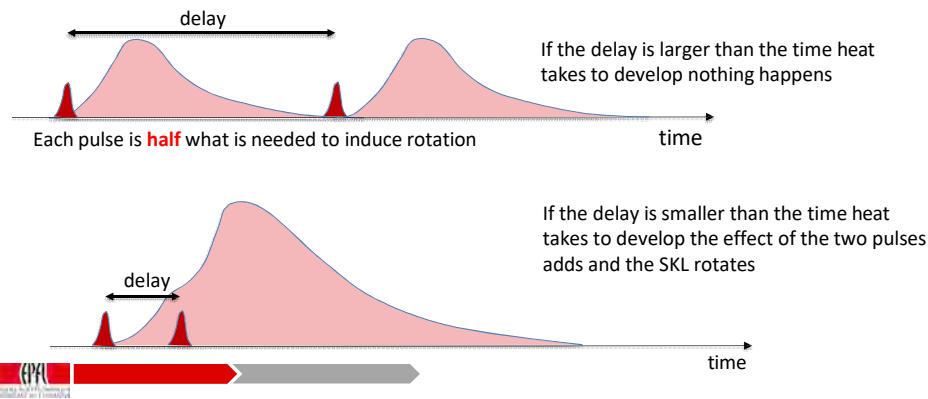
Coherent control of skyrmions

1 fs circularly polarized IR ($>1!''$) laser pulse induces a rotation

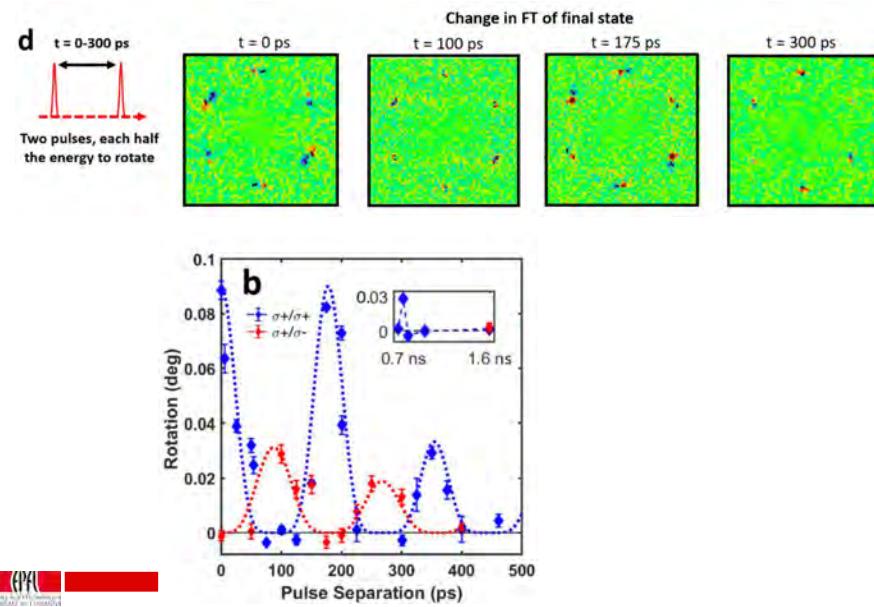
How fast does it rotate? What causes it?

- First hint: rotation has a threshold 2 mJ/cm^2



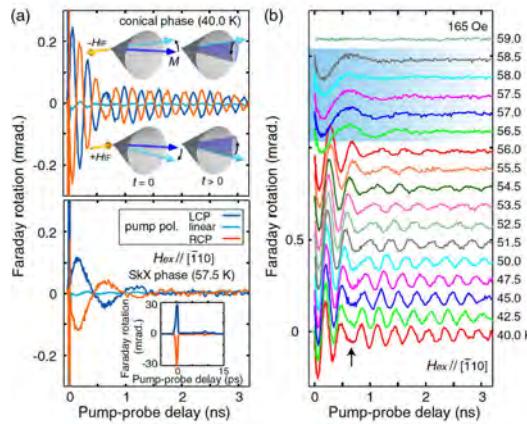

Figure 12

Coherent control of skyrmions

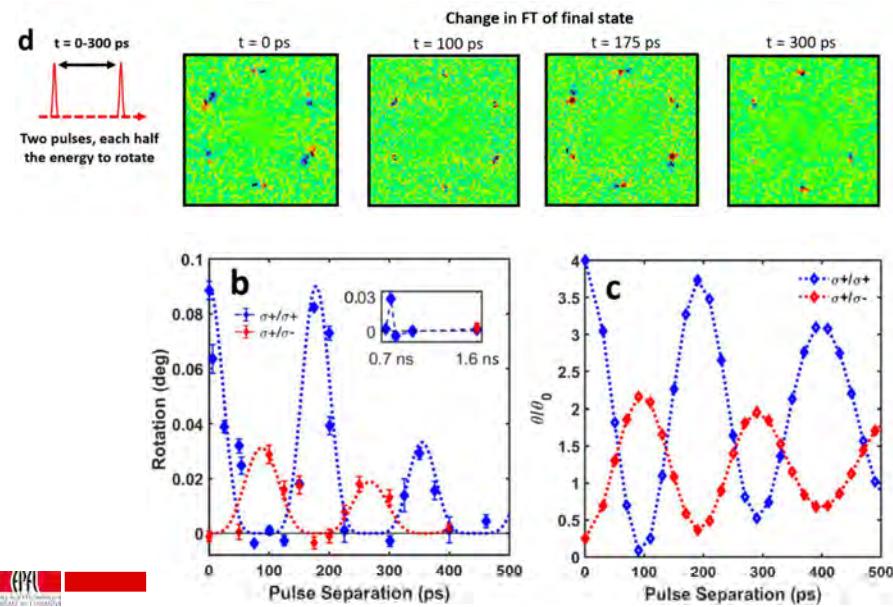

- Is it a thermal effect? Above a certain temperature jump the lattice rotates?
 - Happens on a slow time-scale (ns to 1s) ?
 - Should not depend on polarization (CuOSeO is optically isotropic)
 - Threshold fluence should be higher for wavelengths corresponding to lower absorption coefficient

Rotation is an **IRREVERSIBLE** effect, no stroboscopic method possible

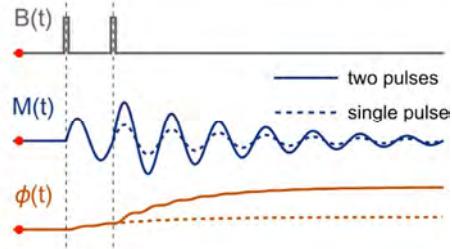
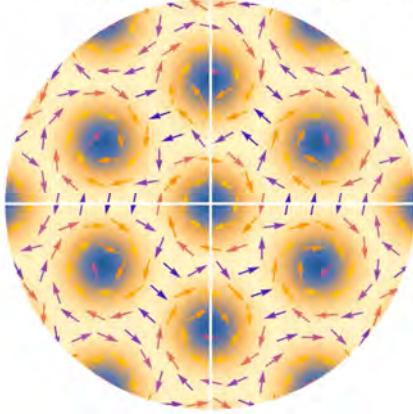
Two pump pulses, CW imaging with LTEM



Coherent control of skyrmions

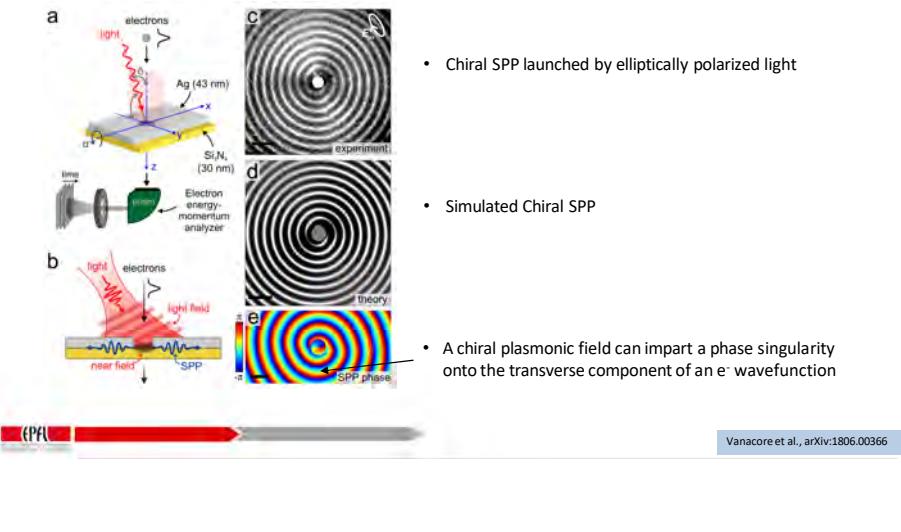

Inverse-Faraday induced coherent magnons

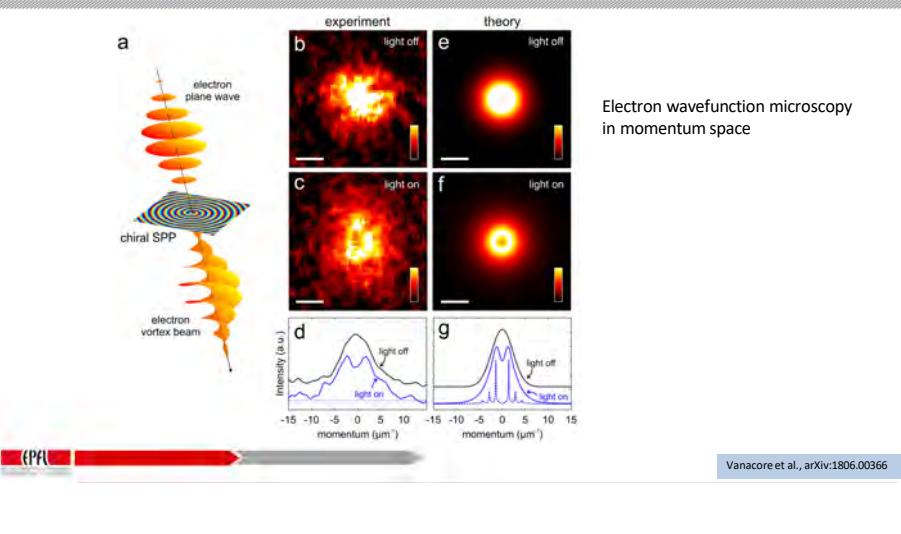
IR pump, induces coherent oscillations of the magnetization via inverse Faraday effect.
Oscillations are vibration modes of the SKL

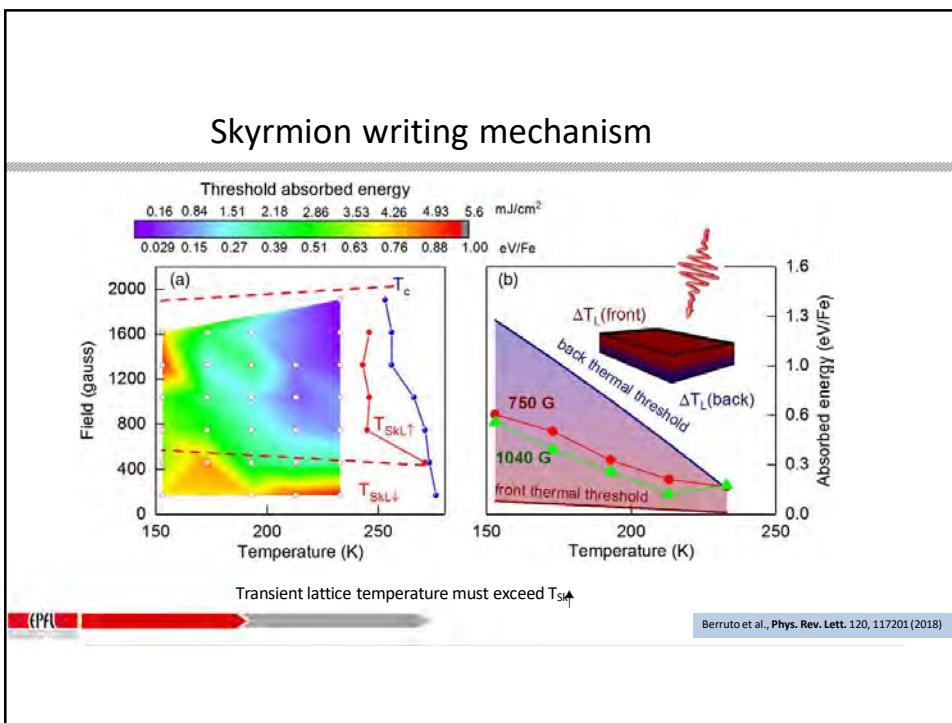
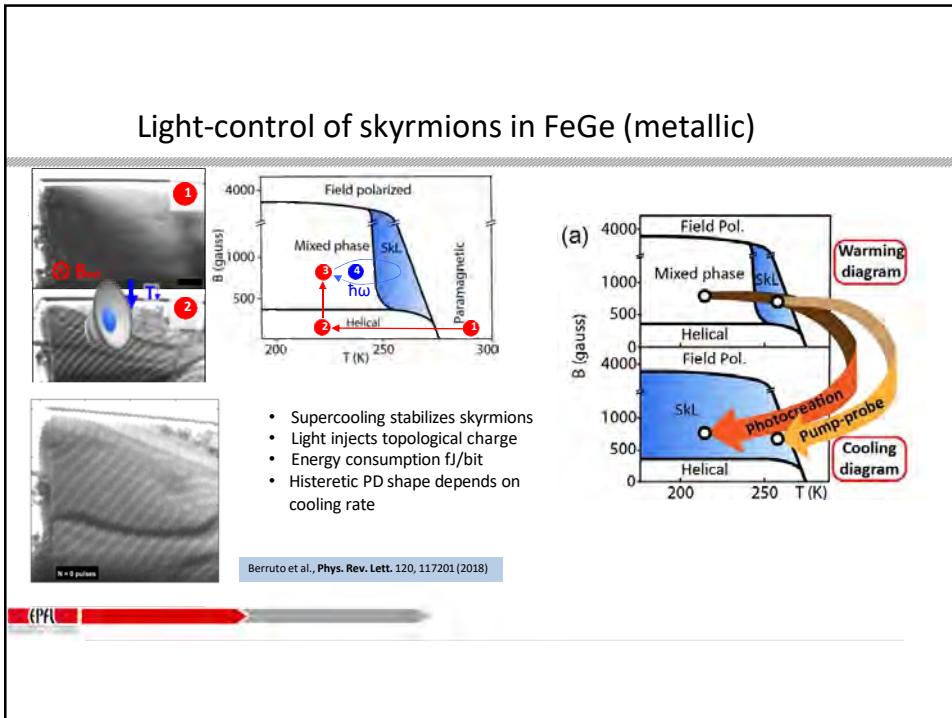


Ultrafast MOKE on CuOSeO
Ogawa, Seki, Tokura,
Sci. Rep. (2015)

Coherent control of skyrmions

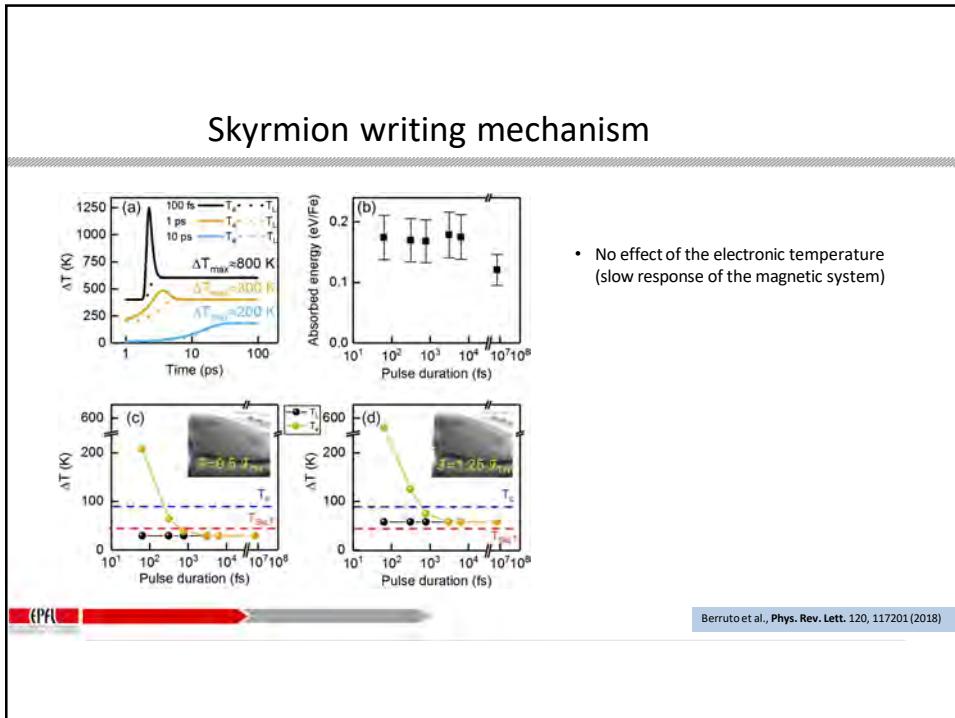
Coherent control of skyrmions


$t = -175 \text{ ps}, \Delta t = 175 \text{ ps}, \alpha = 0.05$

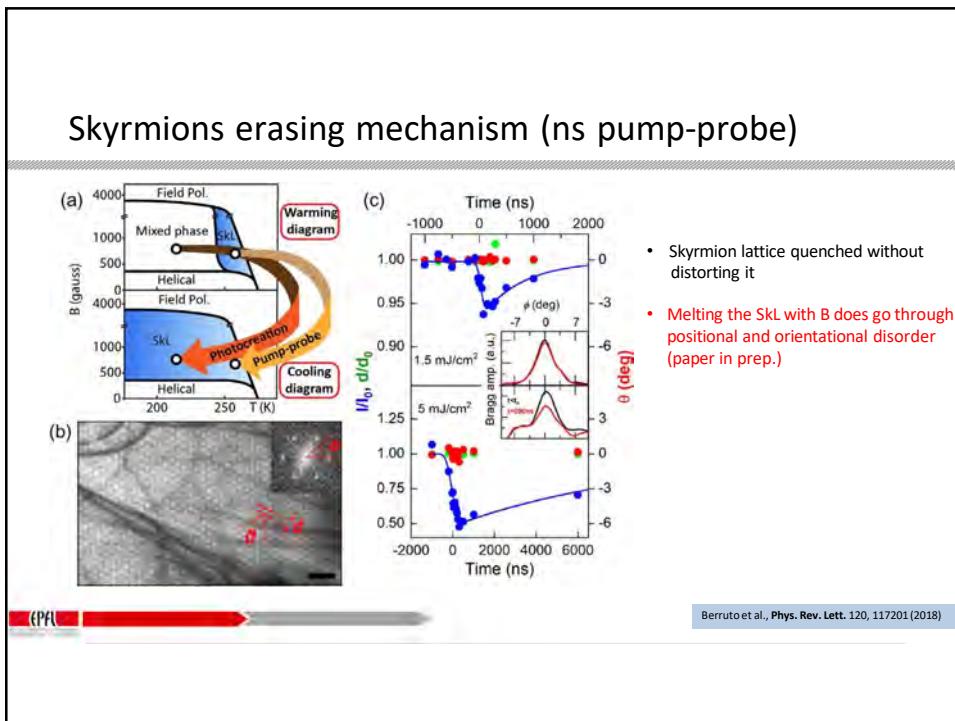

Take home messages

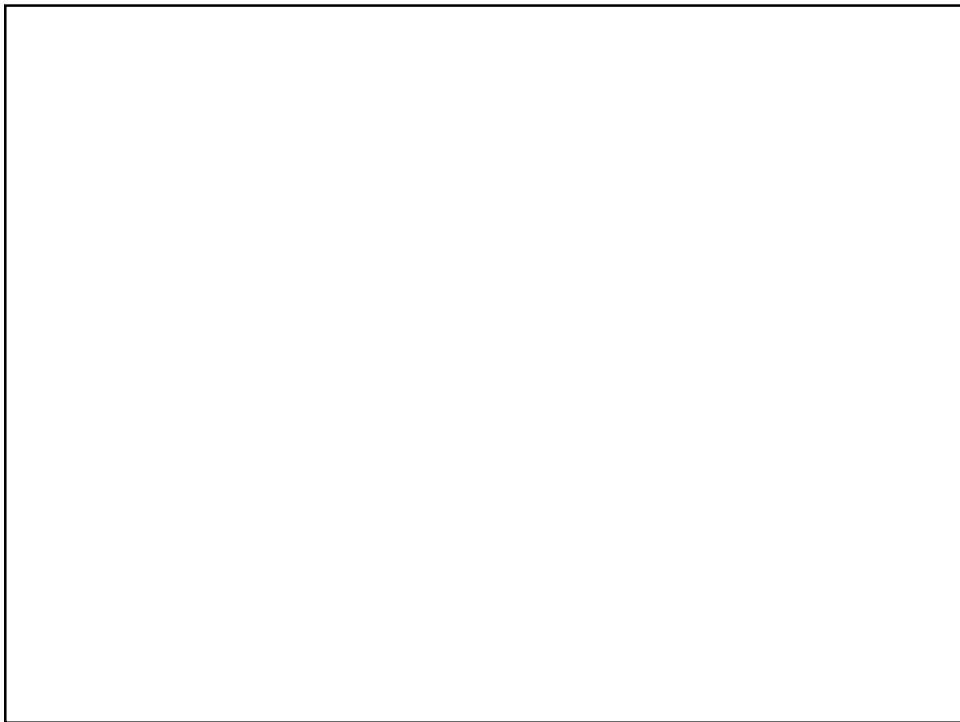


- Magnetic background influences skyrmions motion
- Laser light can write/erase skyrmions via super-cooling effects
- Electric fields can move/create skyrmions efficiently
- Inverse Faraday effect provides the possibility to coherently control the skyrmions

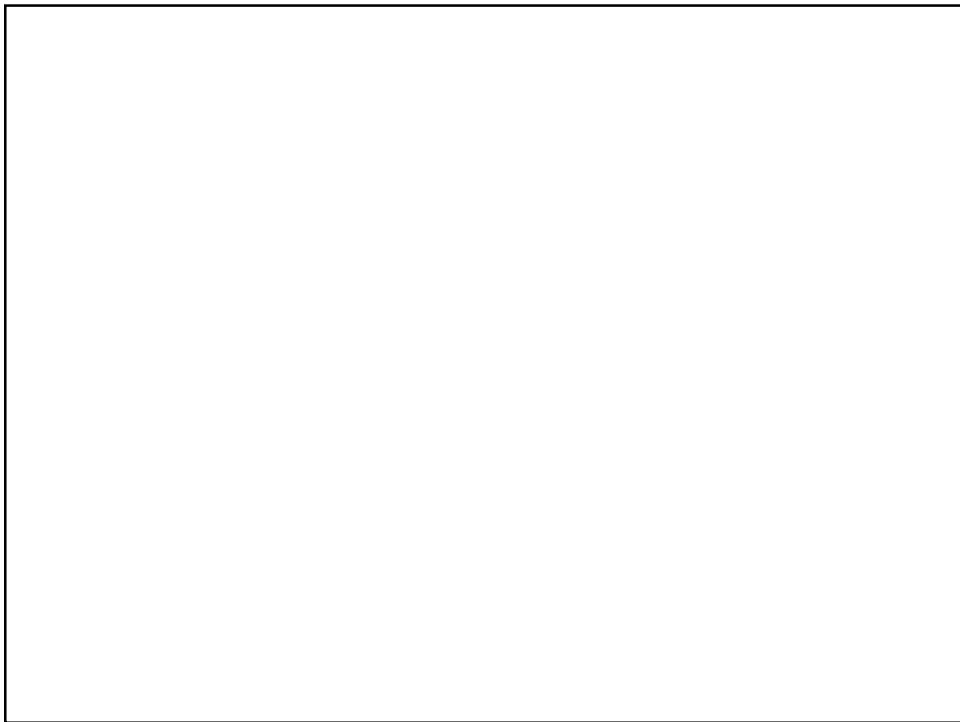
Imparting topological charge to electrons



Electron vortex beam, $m = 1$





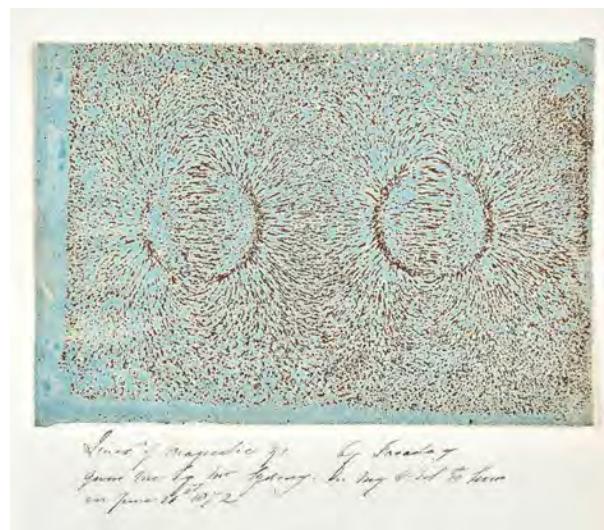

Skyrmion writing mechanism

Skyrmions erasing mechanism (ns pump-probe)

POGGIO LAB

Nanomagnetic Imaging using Scanning Probe Microscopy Techniques

PhD Course:


“Advanced microscopy techniques for characterizing magnetic properties of materials”

17.11.2022

Prof. Martino Poggio

Based on *Nat. Rev. Phys.* 4, 49 (2022).

Faraday's iron filings

M. Faraday, ca. 1830s

2

Scanning tunnelling spectroscopy on atomic-scale

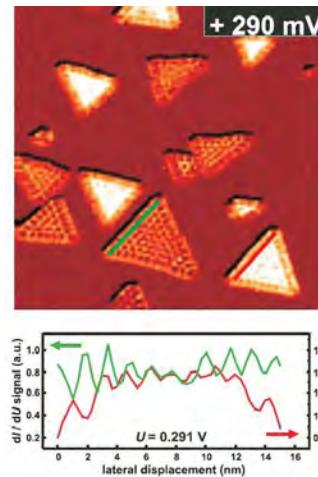
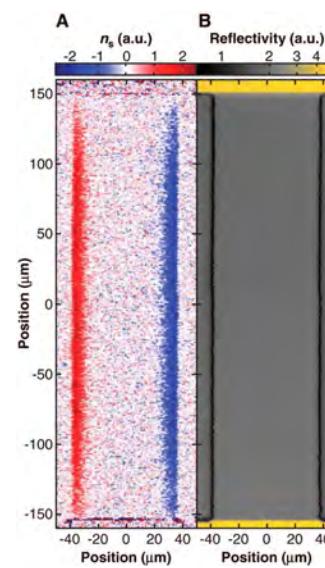
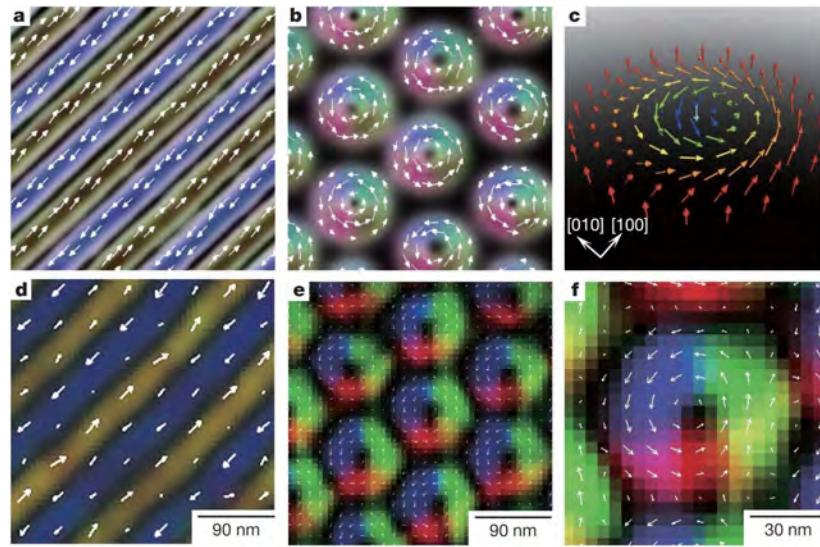



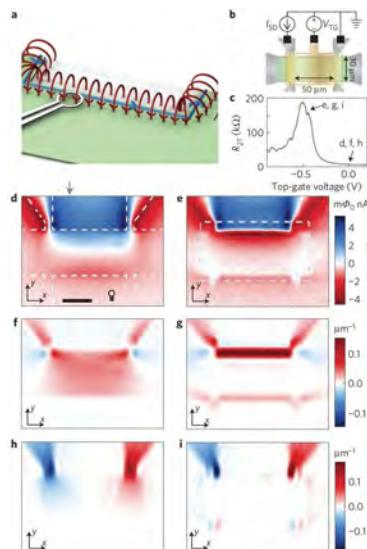
FIG. 44. (Color) SP-STS data ($60 \times 60 \text{ nm}^2$) revealing the spin dependence of the 2D electronic confinement states in nano-scale Co islands which manifests itself by a spin-dependent oscillation amplitude of the confinement states for differently magnetized Co nanoislands. From Pletzsch *et al.*, 2006.

3


Magneto-optical imaging of local spin-polarization

Kato *et al.*, *Science* **306**, 5703 (2004).

4


Lorentz microscopy of skyrmion crystals

Yu et al., *Nature* **465**, 901 (2010).

5

SQUID microscopy of edge currents

Nowack et al., *Nat. Phys.* **12**, 787 (2013).

6

Emergence of 2D materials and vdW heterostructures

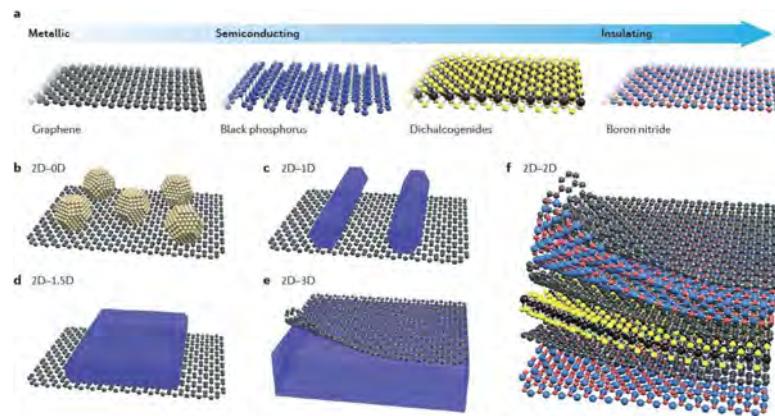


Figure 1 | Two-dimensional layered materials and van der Waals heterostructures. **a** A broad library of two-dimensional layered materials (2DLMs) with varying chemical composition, atomic structures and electronic properties, with an increasing bandgap from left to right. **b–f** Van der Waals heterostructures formed by integrating the dangling-bond-free 2DLMs with 0D nanoparticles or quantum dots (panel **b**), 1D nanowires (panel **c**), 1.5D nanoribbons (panel **d**), 3D bulk materials (panel **e**) and 2D nanosheets (panel **f**).

Liu et al., *Nat. Rev. Mater.* **1**, 1 (2016)

7

Emergence of 2D materials and vdW heterostructures

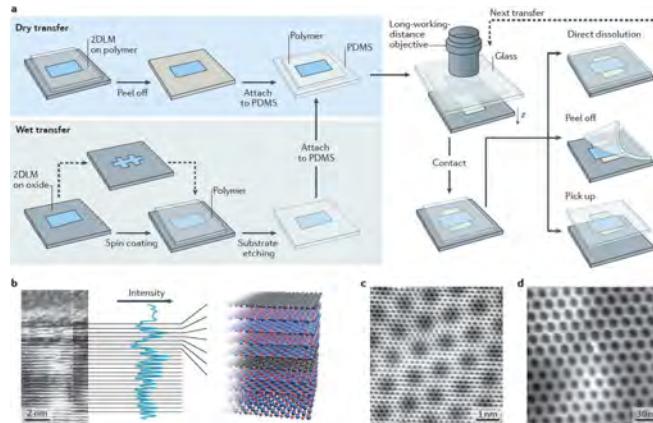


Figure 2 | Assembly and characterization of 2D-2D vdW heterostructures. **a** Schematic illustration of state-of-the-art alignment transfer processes for van der Waals heterostructures. Wet and dry transfer methods are used to attach the 2DLMs to the substrate material. The 2DLMs attached to a dry transfer stamp are placed in the microscope. Micromanipulators allow for the precise alignment of sheets using a long-working-distance objective lens. The polymer transfer stamp can either be chemically dissolved away, mechanically peeled off or used to pick up the entire stack for further transfer steps. **b** False-coloured high-resolution cross-sectional scanning tunnelling microscopy image of the BN-graphene-BN stack (left) and a corresponding schematic representation (right). **c,d** Moiré pattern of graphene on BN (panel **c**) and a much larger Moiré pattern of the commensurate-incommensurate transition of graphene on BN (panel **d**). 2DLM, two-dimensional layered material; BN, boron nitride; PDMS, polydimethylsiloxane). Panel **b** is from REF. 71, Nature Publishing Group. Panel **c** is courtesy of Brian LeRoy, University of Arizona, USA. Panel **d** is from REF. 35, Nature Publishing Group.

Liu et al., *Nat. Rev. Mater.* **1**, 1 (2016)

8

Correlated states in atomically layered materials

ARTICLE

Unconventional superconductivity in magic-angle graphene superlattices

Yuan Cai¹, Valeria Fattori¹, Shikang Fang¹, Kenji Watanabe¹, Takashi Taniguchi¹, Elihu Matos-Kuriss^{1,2} & [Babu Juttley, Heiner³]

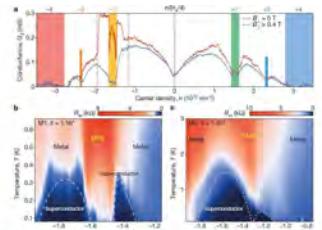


Figure 2 | Gate-tunable superconductivity in magic-angle TBLG.
a, Two-probe conductance ($G = 2\text{ mV}$), of device M1 ($d = 1\text{ nm}$) measured in zero magnetic field. The curves exhibit the typical V-shaped conductance near charge neutrality. b, Two-probe resistance ($R = 1\text{ mΩ}$) measured at $T = 0.4\text{ K}$ (device M2, $d = 1\text{ nm}$). The curves show a more complex behavior with multiple minima. The superconducting gap $\Delta = 0.6\text{ mV}$, which corresponds to filling ± 4 electrons in each moiré unit on/off (blue and red here). They also exhibit reduced conductance at $V_g = 0$ mV, which corresponds to the Coulomb energy due to Coulomb interactions (other colored bars). Near a filling of ± 2 electrons per unit cell, there is a considerable conductance enhancement at zero bias that is suppressed in $B = 0.4\text{ T}$. This enhancement marks the onset of

LETTER

Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit

Bein Huang⁴, Genevieve Clark⁴, Utku Necmettin Mamatli⁴, Tolka R. Klein⁴, Rui Cheng⁴, Kyle L. Seydel⁴, Ding Zhou⁴, Eman Schmidgall⁵, Michael A. McGuire⁶, David H. Cobden⁶, Wang Yin⁷, DX Xie⁸, Pablo J. Martínez-Hernández⁸ & Xiaodong Xu⁴

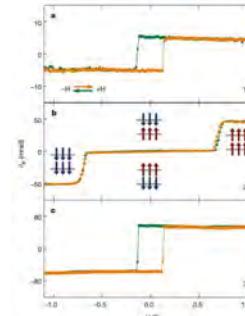


Figure 3 | Layer-dependent magnetic ordering in atomically thin CrI₃. a, MOKE signal on a monolayer (1L) CrI₃ flake, showing hysteresis in the Kerr rotation as a function of applied magnetic field, indicative of antiferromagnetic behavior. b, Kerr rotation for applied fields < 0.03 T, showing insulating behavior. Inset: optical image of 1L CrI₃ flake. c, As in b, but for device M2, showing two symmetric and overlapping domes. The highest critical temperature to $T_c = 1.7\text{ K}$.

9

How to decipher the mechanism behind these phenomena?

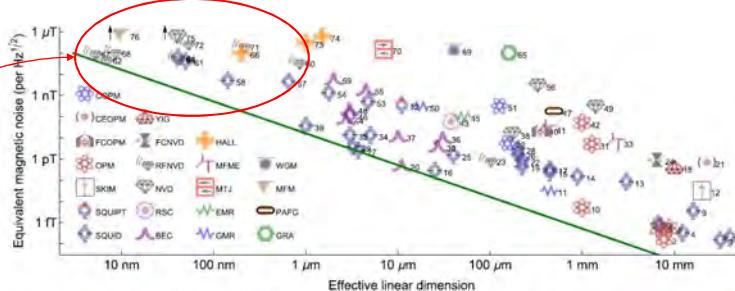
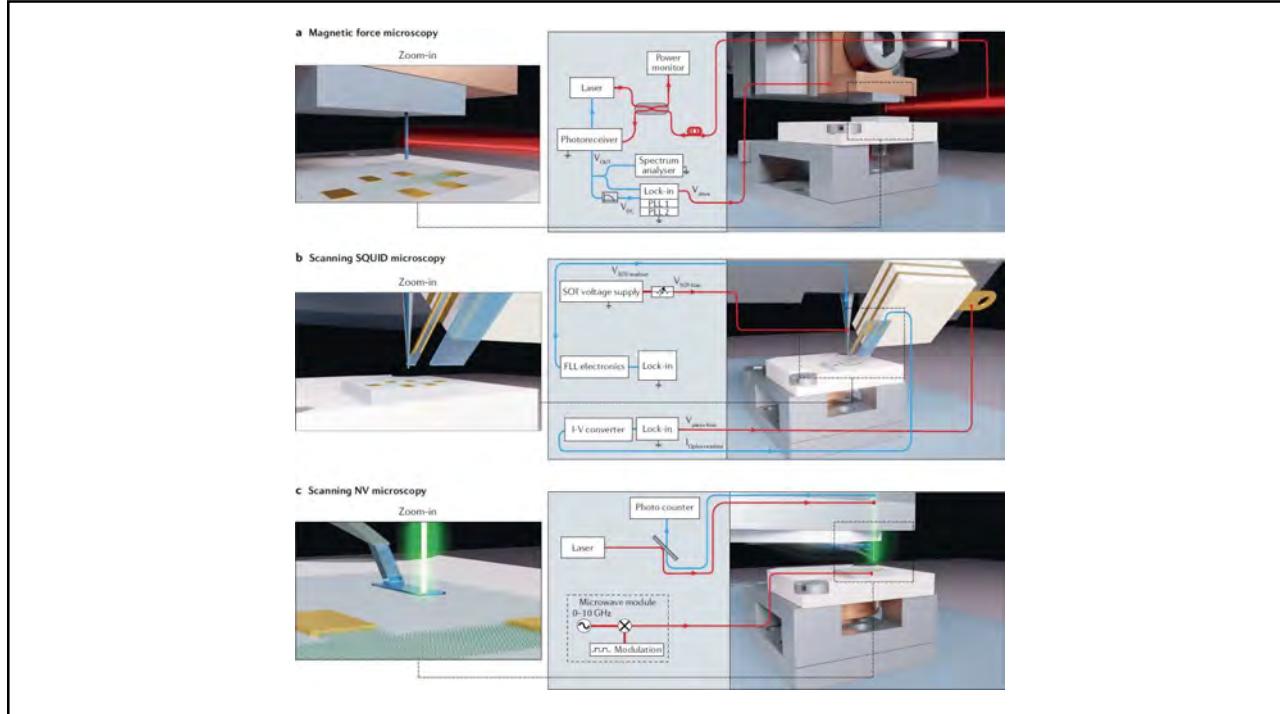
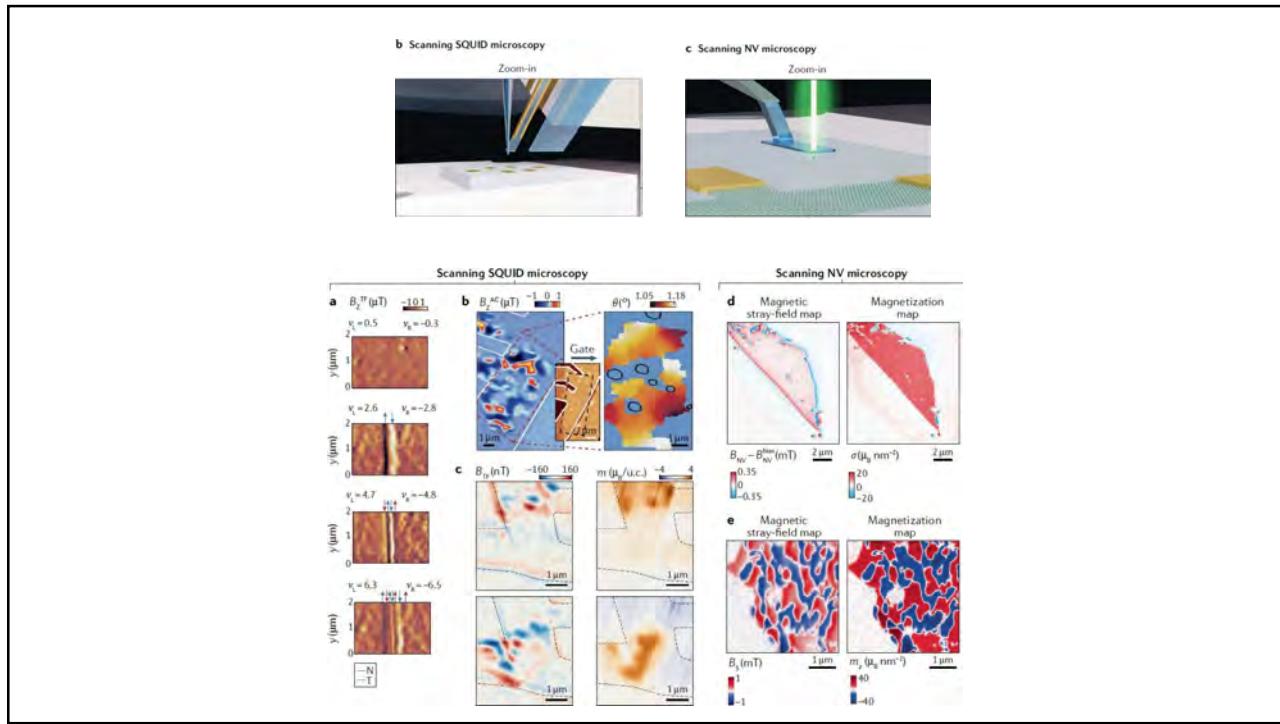
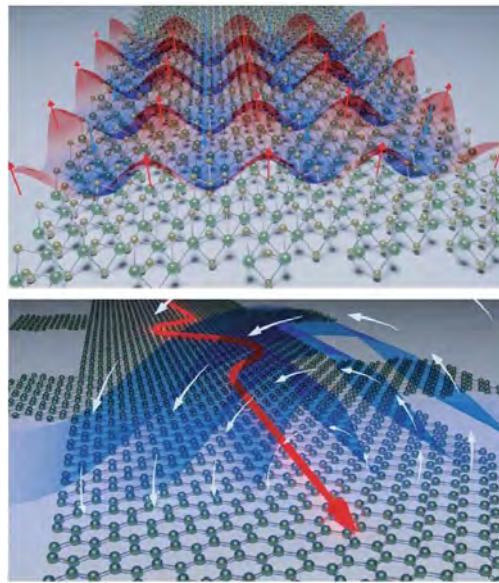




FIG. 2. Reported magnetic sensitivity $\delta B \sqrt{T}$ for different sensor technologies versus size of the sensitive region. Effective linear dimension l_{eff} indicates $\sqrt{\text{area}}$ for planar sensors and $\sqrt{\text{volume}}$ for volumetric ones. For pointlike systems such as single spins, l_{eff} indicates $\sqrt{\text{volume}}$ for a sphere with radius equal to the minimum source-detector distance. For work reporting sensitivity in units of magnetic dipole moment, we convert to field units using the reported sample distance. Excepting RFNVD, noise levels are the lowest reported value at frequency $\leq 1\text{ kHz}$. An arrow indicates that the value is off the scale. SQUID, superconducting quantum interference device; SQUIDP, superconducting quantum interference proximity transistor; SKIM, superconducting kinetic impedance magnetometer; OPM, optically pumped magnetometer; FCOPM, OPM with flux concentrators; CEOPM, cavity-enhanced OPM; COPM, OPM with cold thermal atoms; BEC, Bose-Einstein condensate; RSC, Rydberg Schrödinger cat; NVD, nitrogen-vacancy center in diamond; RFNVD, radio-frequency NVD; FCNVD, NVD with flux concentrators; YIG, yttrium-aluminum-garnet; GMR, giant magnetoresistance; EMR, extraordinary magnetoresistance; MTJ, magnetic tunnel junction; MEMF, magnetoelectric multiferroic; HALL, Hall-effect sensor; GRA, graphene; PAFG, parallel gating fluxgate; MFM, magnetic force microscope; WGM, whispering-gallery mode magnetostrictive. Line shows $E_g = (\delta B^2)T l_{\text{eff}}^3 / (2\mu_0) = h$. Numeric labels refer to Table I.


Map weak magnetic field patterns with high spatial resolution

Mitchell & Palacios Alvarez, *Rev. Mod. Phys.* **92**, 021001 (2020)

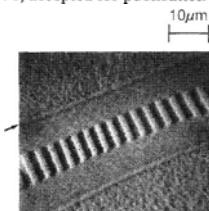
10

Idealized signal sources

Magnetic imaging by “force microscopy” with 1000 Å resolution

Y. Martin and H. K. Wickramasinghe
IBM T. J. Watson Research Center, P. O. Box 218, Yorktown Heights, New York 10598

(Received 19 December 1986; accepted for publication 19 March 1987)

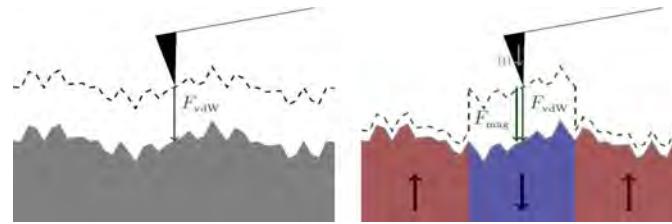

We describe a new method for imaging magnetic fields with 1000 Å resolution. The technique is based on using a force microscope to measure the magnetic force between a magnetized tip and the scanned surface. The method shows promise for the high-resolution mapping of both static and dynamic magnetic fields.

Appl. Phys. Lett. 50 (20), 18 May 1987

Magnetic force microscopy: General principles and application to longitudinal recording media

D. Rugar, H. J. Mamin, P. Guethner,^{a)} S. E. Lambert,^{b)} J. E. Stern,^{c)} I. McFadyen,^{b)} and T. Yogi^{b)}
IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, California 95120-6099

(Received 15 January 1990; accepted for publication 13 April 1990)

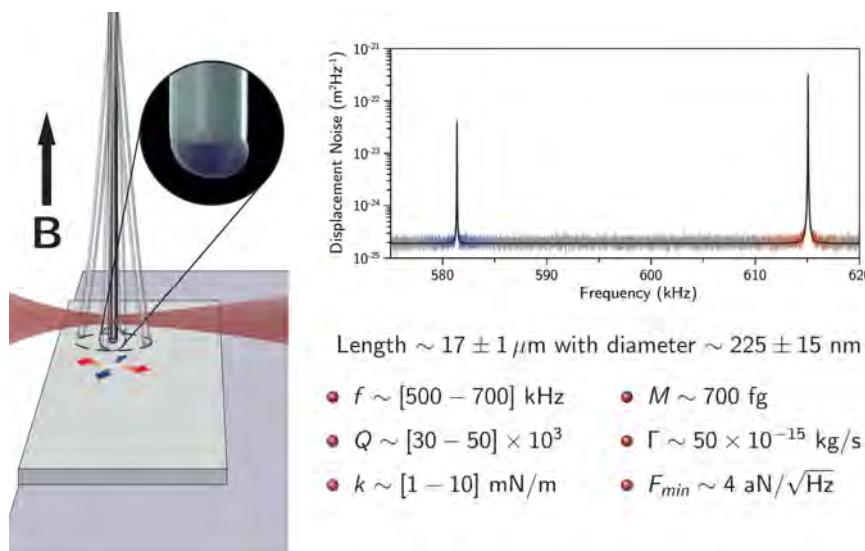


J. Appl. Phys. 68 (3), 1 August 1990

ZI Applications
www.zhinst.com

14

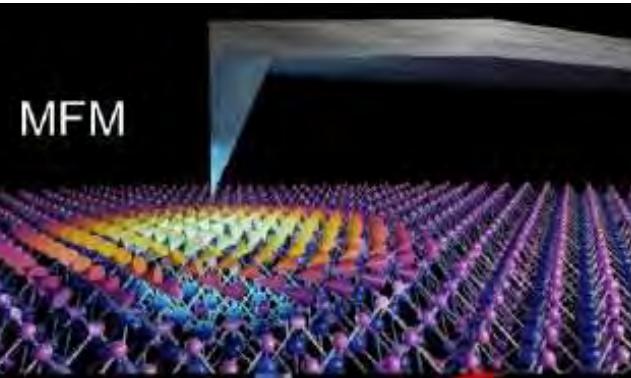
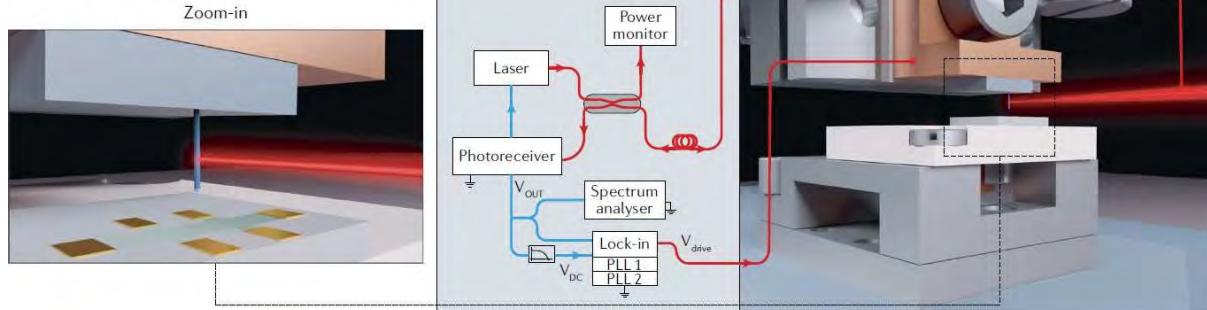
MFM achieves down to 10 nm resolution


Schwenk, *Ph.D. Thesis in Physics*, University of Basel (2016).

Schmid et al., *Phys. Rev. Lett.* **105**, 197201 (2010).

15

NWs with magnetic tips

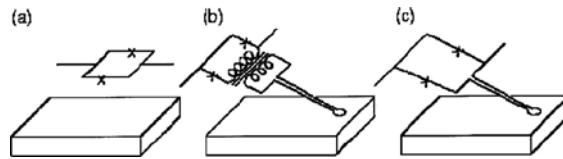



Rossi et al., *Nano Lett.* **19**, 930 (2019).

16

MFM

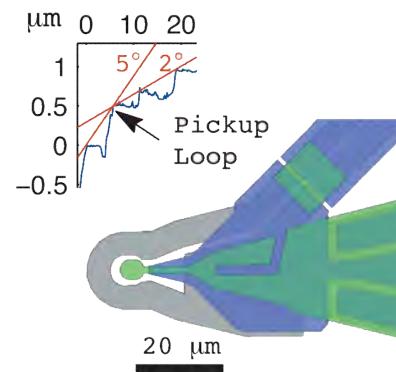
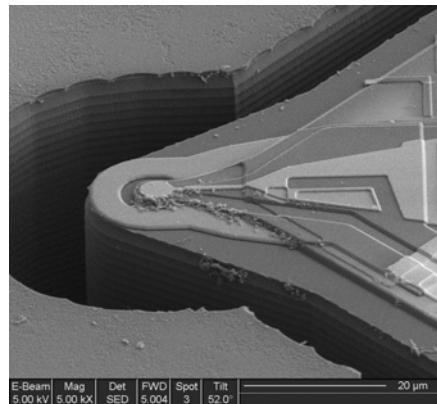
a Magnetic force microscopy

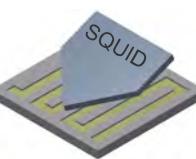

SCANNING SQUID MICROSCOPY

John R. Kirtley

IBM T. J. Watson Research Center, Yorktown Heights, New York 10598;
e-mail: kirtley@watson.ibm.com

John P. Wikswo, Jr.

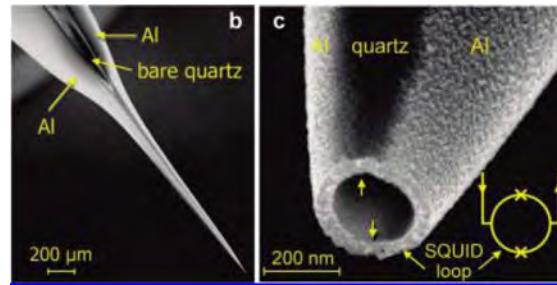


Department of Physics and Astronomy, Vanderbilt University, Nashville,
Tennessee 37235; e-mail: wikswojp@ctrvax.vanderbilt.edu


Annu. Rev. Mater. Sci. 1999, 29:117–48

19

Pick-up loop scanning SQUIDS

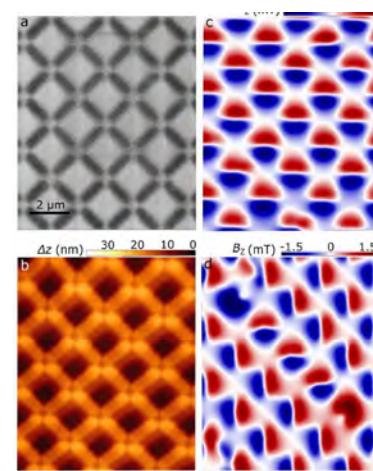
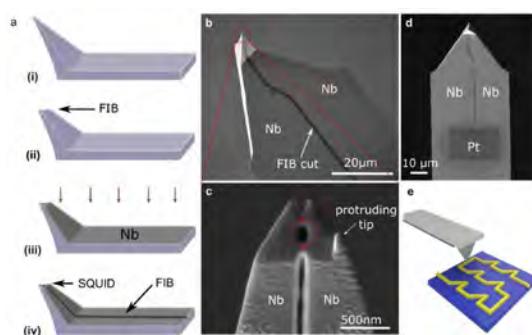
- Spatial resolution $\sim 1 \mu\text{m}$
- Field sensitivity $\sim 130 \text{ nT Hz}^{-1/2}$
- $\sim 400 \text{ nm}$ to the sample


Koshnick et al., APL **93**, 243101 (2008)
Kirtley et al., RSI **87**, 093702 (2016)

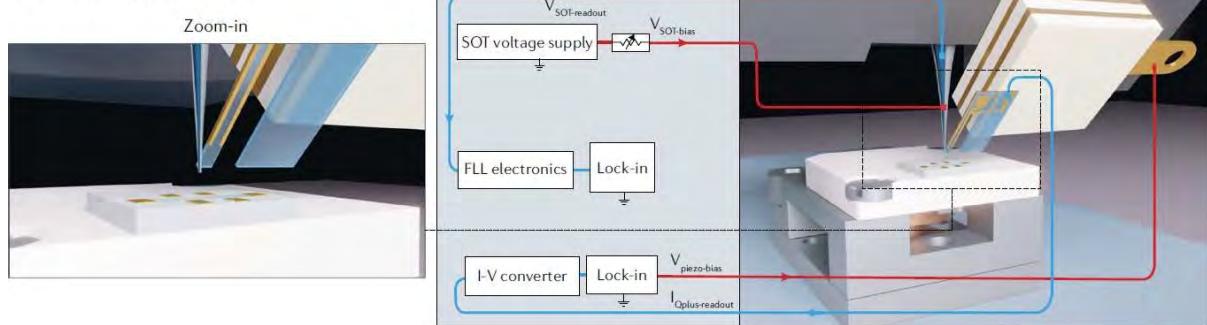
20

Self-Aligned Nanoscale SQUID on a Tip

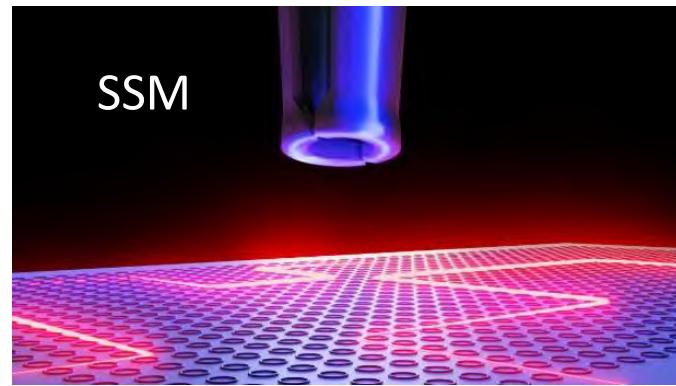
Amit Finkler,^{*†} Yehonathan Segev,[†] Yuri Myasoedov,[†] Michael L. Rappaport,[†] Lior Ne'eman,[†] Denis Vasyukov,[†] Eli Zeldov,[†] Martin E. Huber,[†] Jens Martin,[§] and Amir Yacoby[§]



[†]Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel, [‡]Departments of Physics and Electrical Engineering, University of Colorado, Denver, Colorado 80217, and [§]Department of Physics, Harvard University, Cambridge, Massachusetts 02138

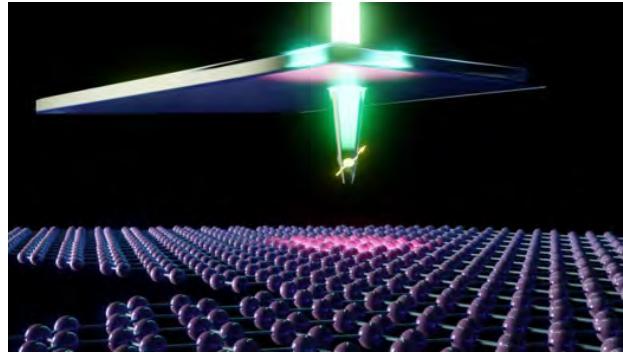
Nano Lett. **2010**, *10*, 1046–1049


21

Initial results show great potential

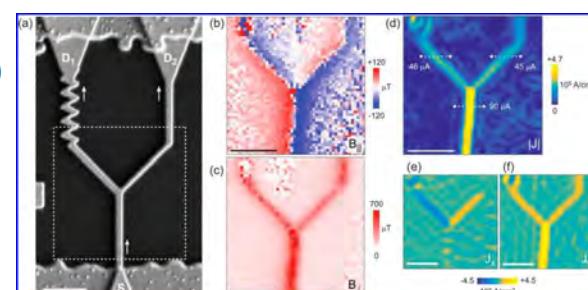
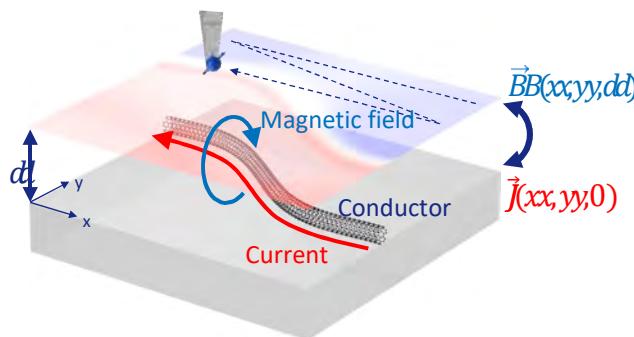


Scanning SQUID Microscopy


b Scanning SQUID microscopy

SSM

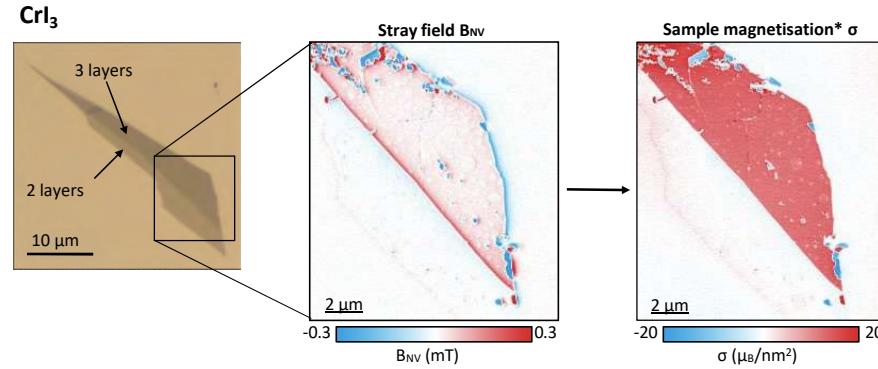
Scanning Nitrogen-vacancy Center Microscopy (SNVM)

Sensitivity down to
 $100 \text{ nT}/(\text{Hz})^{1/2}$

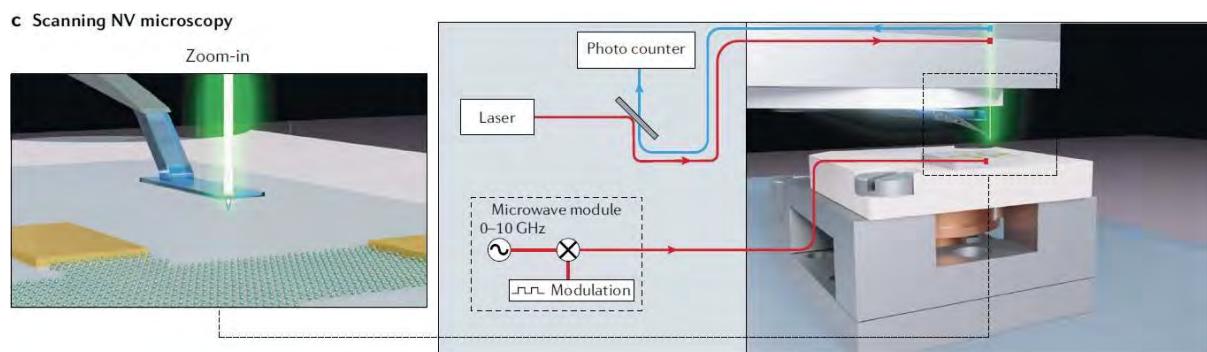
Spatial resolution
down to 10 nm

25

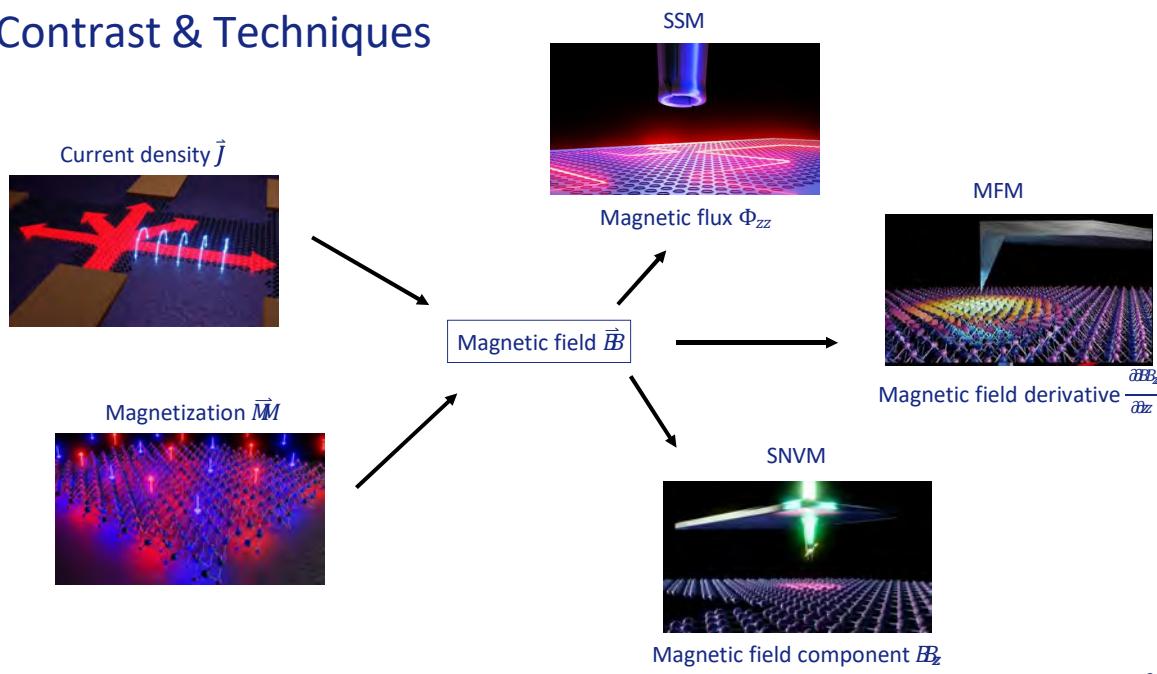

Imaging current with SNVM

Chang et al., *Nano Lett.* **17**, 2367 (2017).

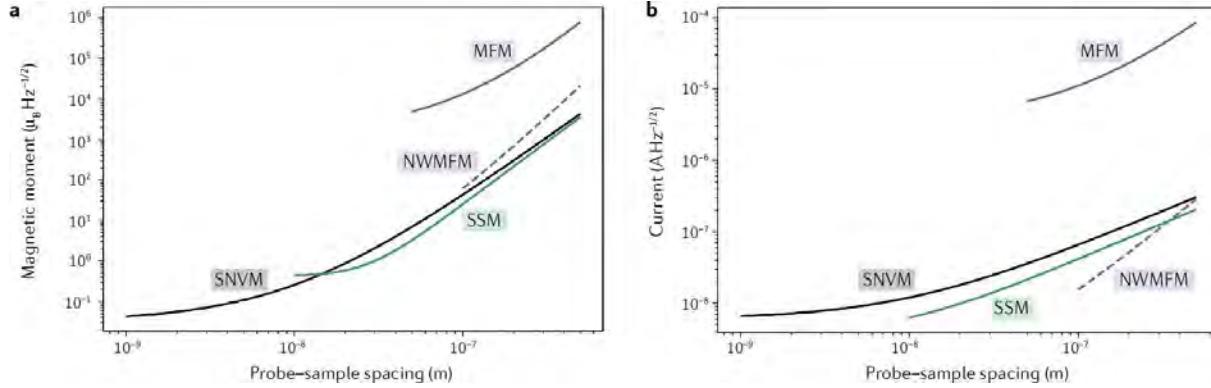
26


Scanning NV microscopy of 2D magnets

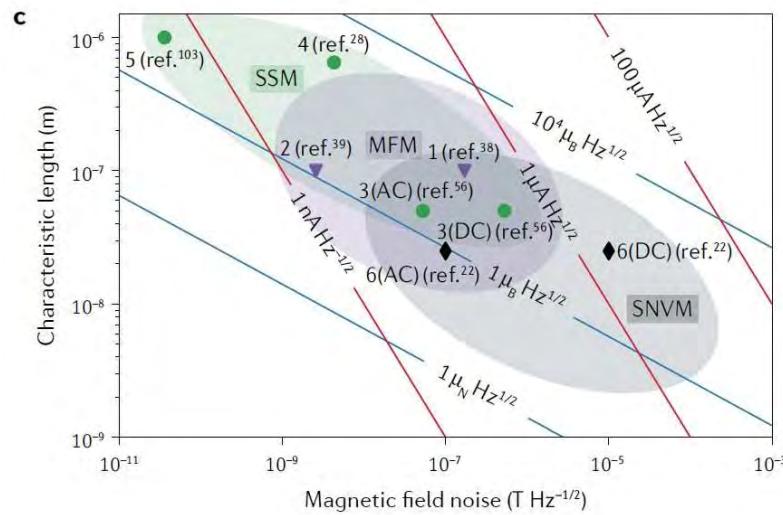
Thiel et al., *Science* **364**, 973 (2019).


27

Scanning NV Microscopy



Contrast & Techniques



Probe-sample Spacing

31

Sensor Size

32

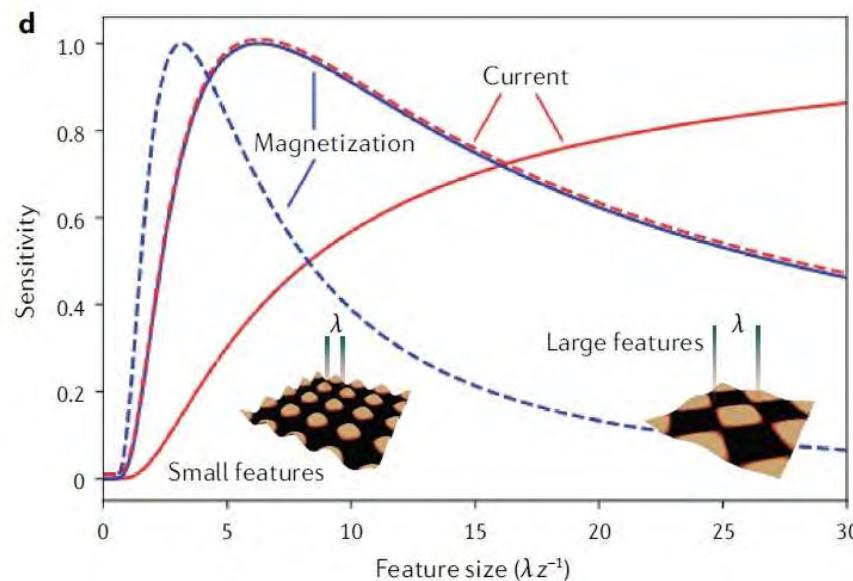

Properties

Table 1 | Parameters for state-of-the-art magnetic scanning probe microscopies combining the highest sensitivity with the highest resolution

	MFM (conventional) ^{31,32,38,102–104}	MFM (nanowire) ³⁹	SSM (susceptometer) ⁵³	SSM (SQUID-on-tip) ⁵⁶	SNVM ^{22,74,82,83}
Sensor size	10–100 nm	100 nm	0.5 μ m	50 nm	<1 nm
Sensor stand-off	10–100 nm	50 nm	330 nm	25 nm	50 nm
Spatial resolution	10–100 nm	100 nm ^a	0.5 μ m	100 nm	15–25 nm
DC sensitivity	10–100 μ THz ^{-1/2}	3 nTHz ^{-1/2a}	660 nTHz ^{-1/2}	50 nTHz ^{-1/2}	4 μ THz ^{-1/2}
AC sensitivity	170 nTHz ^{-1/2}	3 nTHz ^{-1/2}	130 nTHz ^{-1/2}	5 nTHz ^{-1/2}	100 nTHz ^{-1/2}
Operating field	<20 T	<10 T	<30 mT	<1.2 T	<hundreds of mT
Operating temperature	<500 K	<300 K	<9 K	<7 K	<600 K

MFM, magnetic force microscopy; SNVM, scanning nitrogen-vacancy microscopy; SQUID, superconducting quantum interference device; SSM, scanning SQUID microscopy. ^aRepresents estimates based on the properties of the sensors, which have not yet been experimentally confirmed.

Sensitivity as a function of feature size

References

- [Reviews on scanning magnetic field probes](#)
 - [Nat. Rev. Phys. 4, 49 \(2022\)](#)
 - [Rep. Prog. Phys. 73, 126501 \(2010\)](#)
 - [Rev. Mod. Phys. 92, 021001 \(2020\)](#)
- [Current and magnetization reconstruction](#)
 - [Nano Lett. 17, 2367 \(2017\)](#)
 - [J. Geophys. Res. 114, B06102 \(2009\)](#)
 - [J. Appl. Phys. 65, 361 \(1989\)](#)

Nanoscale magnetic field imaging for 2D materials

Estefanía Marchiori¹, Lorenzo Caccarelli¹, Nicola Rossi¹, Luca Lorenzelli¹, Christian L. Degen^{2,3} and Martina Poggio^{2,3,✉}

Colloquium: Quantum limits to the energy resolution of magnetic field sensors

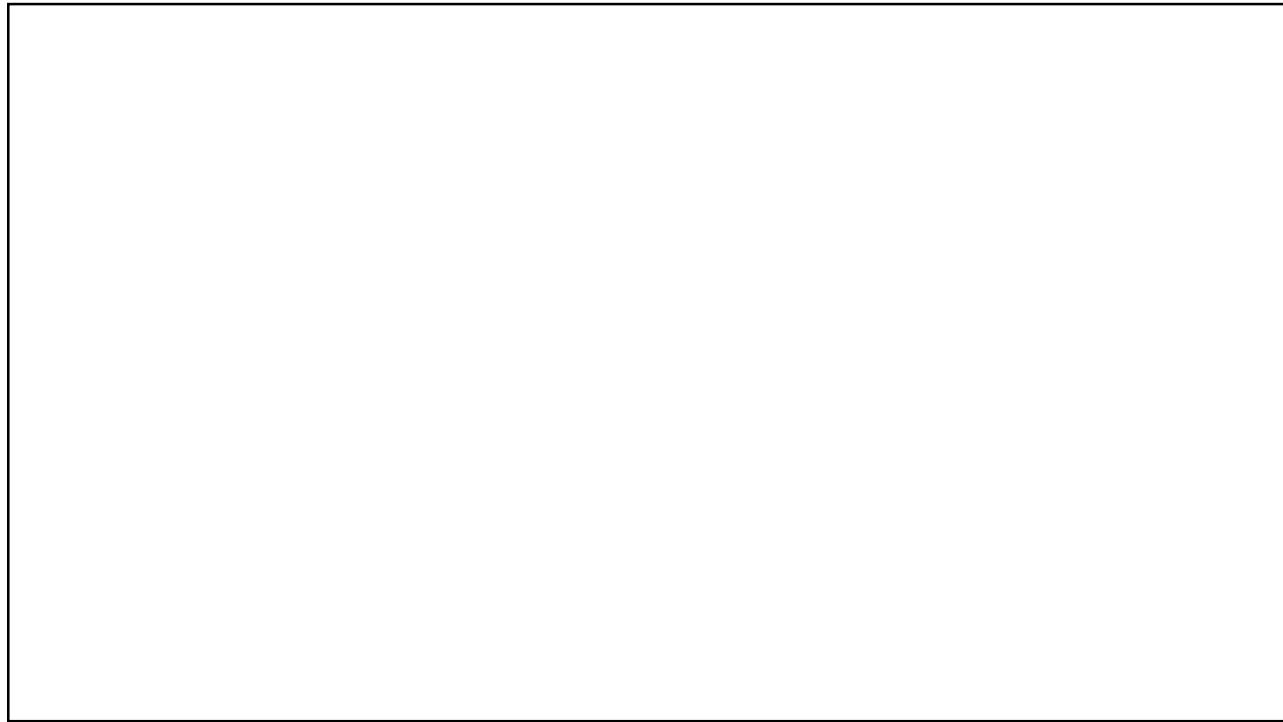
Morgan W. Mitchell¹
ICFO—Institut de Ciències Fotoniques, The Barcelona Institute of Science and Technology,
08860 Castelldefels, Barcelona, Spain
and ICREA—Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain

Silvana Palacios Alvarez²
ICFO—Institut de Ciències Fotoniques, The Barcelona Institute of Science and Technology,
08860 Castelldefels, Barcelona, Spain

Fundamental studies of superconductors using scanning magnetic imaging

J R Kirtley

Nanoscale Imaging of Current Density with a Single-Spin Magnetometer


K. Chang, A. Eichler, J. Rhensius, L. Lorenzelli, and C. L. Degen[✉]

Obtaining vector magnetic field maps from single-component measurements of geological samples

Eduardo A. Lima¹ and Benjamin P. Weiss¹

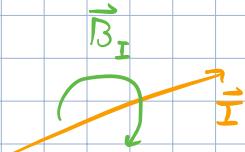
Using a magnetometer to image a two-dimensional current distribution

Bradley J. Roth¹, Nestor G. Sopuerta, and John P. Wikswo, Jr.
Living Matter Physics Group and Vanderbilt Electromagnetics Laboratory, Department of Physics and
Astronomy, Vanderbilt University, Nashville, Tennessee 37235

Nanomagnetic Imaging using Scanning Probe Microscopy Techniques

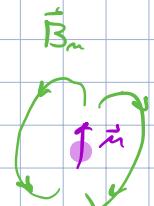
PhD Course, EPFL, 2020

Sensitivity

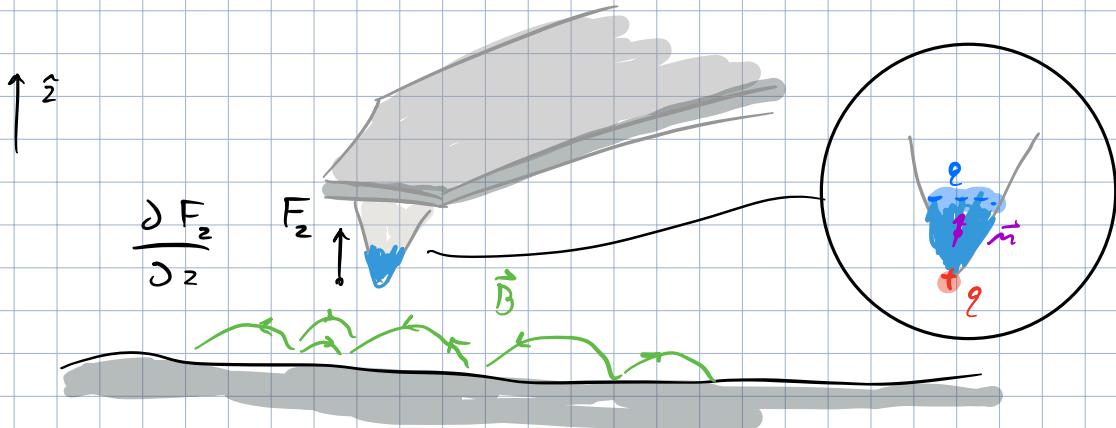

To evaluate sensitivity : **Signal - to - noise**

Let's take two localized signals :

- a line of current \vec{I}
- a magnetic moment \vec{m}


- Current :

$$\vec{B}_I = \frac{\mu_0 \vec{I} \times \vec{r}}{2\pi r^2}$$


- moment :

$$\vec{B}_m = \frac{\mu_0}{4\pi r^3} \left(\frac{3(\vec{m} \cdot \vec{r}) \vec{r}}{r^2} - \vec{m} \right)$$

MEM

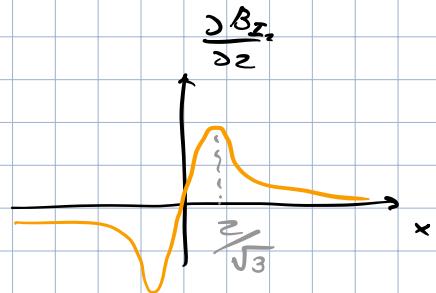
• **Signal**

$$F_z = \mu_0 \vec{B} \cdot \hat{z} + \vec{D}(\vec{m} \cdot \vec{B}) \cdot \hat{z}$$

↳ monopole
↳ dipole

If we assume a monopole tip and a measurement of force gradients (ΔF):

$$\frac{\partial F_z}{\partial z} = \mu_0 \frac{\partial B_z}{\partial z}$$

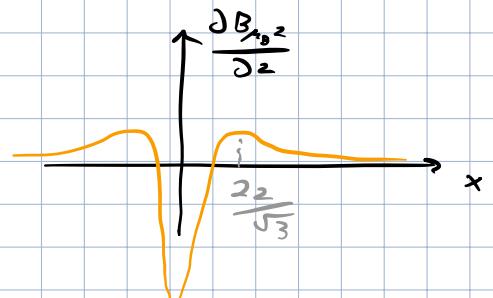

∴

$$\frac{\partial B_z}{\partial z} = \frac{1}{\mu_0} \frac{\partial F_z}{\partial z}$$

The maximum signal at a given height z what we can measure for a line of current:

$$\frac{\partial}{\partial x} \left(\frac{\partial B_{Iz}}{\partial z} \right) = 0$$

$$x = -\frac{z}{\sqrt{3}}, \frac{z}{\sqrt{3}}$$


$$\left(\frac{\partial B_{Iz}}{\partial z} \right)_{\max} = \frac{3\sqrt{3}\mu_0 I}{16\pi z^2}$$

$$\left[\frac{T}{m} \right]$$

Similarly for a μ_B of magnetic moment:

$$\frac{\partial}{\partial x} \left(\frac{\partial B_{\mu_B z}}{\partial z} \right) = 0$$

$$x = -\frac{2z}{\sqrt{3}}, 0, \frac{2z}{\sqrt{3}}$$

$$\left(\frac{\partial B_{\mu_B z}}{\partial z} \right)_{\max} = \frac{3\mu_0 \mu_B}{2\pi z^4}$$

$$\left[\frac{T}{m} \right]$$

• Noise

The ultimate noise limit is from the thermal motion of the cantilever:

$$S_F = 4k_B T \Gamma \leftarrow \text{Fluctuation-Dissipation Theorem}$$

This implies a thermal force noise amplitude that sets a minimum measurable force:

$$F_{\min} = \sqrt{4k_B T \Gamma}$$

For measurements of force gradients done by oscillating the cantilever by z_{rms} and monitoring its resonant frequency, we have:

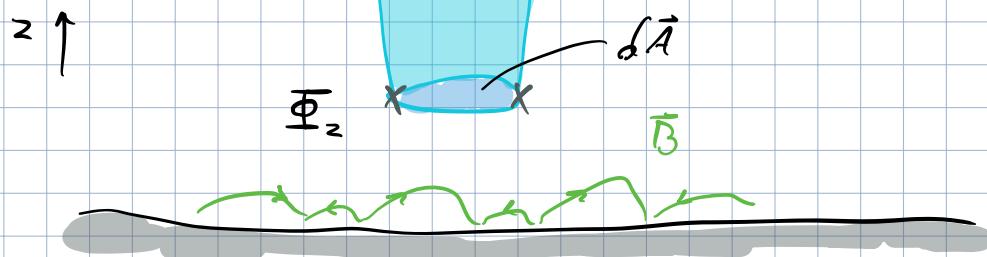
$$\left(\frac{\partial F}{\partial z} \right)_{\min} = \frac{1}{z_{\text{rms}}} \sqrt{4k_B T \Gamma}$$

30 $\frac{\text{N}}{\text{m}\sqrt{\text{Hz}}}$
@ 4K

$$\therefore \left(\frac{\partial B_z}{\partial z} \right)_{\min} = \frac{1}{2z_{\text{rms}}} \sqrt{4k_B T \Gamma} \left[\frac{\text{N}}{\text{m}\sqrt{\text{Hz}}} \right]$$

We can then see the sensitivity to I or μ_B by writing:

Current Sens.


$$\frac{\left(\frac{\partial B_z}{\partial z}\right)_{\min}}{\left(\frac{\partial B_{I_2}}{\partial z}\right)_{\max}} \cdot I \propto z^2 \quad \left[\frac{A}{\sqrt{Hz}} \right] \xrightarrow{\text{at } 50 \text{ nm}} \frac{10^3 \mu_0}{\sqrt{Hz}}$$

Moment Sens.

$$\frac{\left(\frac{\partial B_z}{\partial z}\right)_{\min}}{\left(\frac{\partial B_{\mu_B z}}{\partial z}\right)_{\max}} \cdot \mu_0 \propto z^4 \quad \left[\frac{\mu_B}{\sqrt{Hz}} \right] \xrightarrow{\text{at } 50 \text{ nm}} 10^3 \frac{\mu_0}{\sqrt{Hz}}$$

SSM

• Signal

$$\overline{\Phi}_z = \int \vec{B} \cdot \delta \vec{A}$$

If we now calculate the flux directly above a μ_B of moment:

$$\left(\frac{\Phi_{Bz}}{\Phi_0} \right)_{\text{max}} = \frac{\mu_0 \mu_B R^2}{2(z^2 + R^2)^{3/2}}$$

loop radius

$$[F \cdot m^2 = Wb]$$

• Noise

There are several sources of noise:

- Johnson noise

- shot noise

- 1/f noise

- quantum noise $\rightarrow \Phi_0 = \sqrt{k_L}$

states of
the art
are $\sim 4x$
this limit

Loop inductance

$$\therefore \left(\frac{\Phi_z}{\Phi_0} \right)_{\text{min}} = \frac{\Phi_{\text{noise}}}{\Phi_0}$$

$$\rightarrow S_0 \sim \frac{\Phi_0}{\sqrt{Hz}}$$

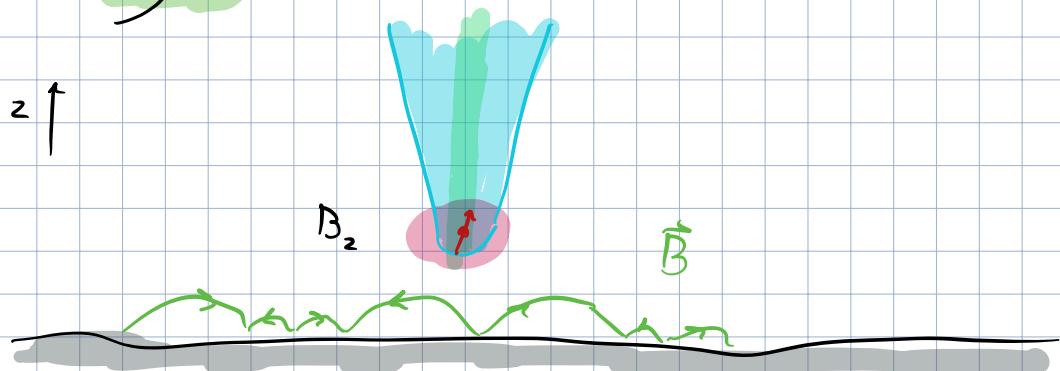
Sensitivity:

Current
Sens.

$$\frac{\left(\frac{\Phi_z}{\Phi_0} \right)_{\text{min}}}{\left(\frac{\Phi_{Bz}}{\Phi_0} \right)_{\text{max}}} \cdot I$$

$$\left[\frac{A}{\sqrt{Hz}} \right]$$

$10 \frac{A}{\sqrt{Hz}} @ 50nm$


Moment
Sens.

$$\frac{\left(\frac{\Phi_z}{\Phi_0} \right)_{\text{min}}}{\left(\frac{\Phi_{Bz}}{\Phi_0} \right)_{\text{max}}} \cdot \mu_B \propto z^3 \left[\frac{\mu_B}{\sqrt{Hz}} \right]$$

$\frac{\mu_B}{\sqrt{Hz}} @ 50nm$

SNUM

- Signal

By measuring the NV splitting, we measure the magnetic field along the NV axis:

$$B_z = \vec{B} \cdot \hat{z}$$

$$(B_{z_2})_{\max} = \frac{\mu_0 I}{4\pi z}$$

[T]

$$(B_{B_2})_{\max} = \frac{\mu_0 M_0}{2\pi z^3}$$

[T]

• Noise

SNR is typically limited by photon shot noise from the optical read-out.

Minimum measurable field can be

written as :

$$(\beta_z)_{\min} = \frac{I}{\gamma \sum I_0 + \text{acq} \frac{I_0}{T_2}}$$

optical contrast

gyromagnetic ratio

count rate

decoherence

integration

$\rightarrow 100 \text{nT} / \sqrt{\text{Hz}}$

Sensitivity :

Current Sens.

$$\frac{(\beta_z)_{\min}}{(\beta_{I_z})_{\max}} \cdot I \propto z^2$$

$\left[\frac{A}{\sqrt{\text{Hz}}} \right] \rightarrow 10 \text{nA} / \sqrt{\text{Hz}}$

$\text{@ } 25 \text{ m}$

Moment Sens.

$$\frac{(\beta_z)_{\min}}{(\beta_{\mu_0 z})_{\max}} \cdot \mu_0 \propto z^3$$

$\left[\frac{\text{nT}}{\sqrt{\text{Hz}}} \right] \rightarrow \frac{\text{nT}}{\sqrt{\text{Hz}}}$

$\text{@ } 25 \text{ m}$

Reconstruction of \vec{J} & \vec{m} from \vec{B}

Biot - Savart :

$$\vec{B} = \frac{\mu_0}{4\pi} \int \frac{\vec{J}(\vec{r}') \times (\vec{r} - \vec{r}')}{|\vec{r} - \vec{r}'|^3} d^3 r'$$

For current density $\vec{J} = J_x \hat{x} + J_y \hat{y}$

or magnetization $\vec{m} = M_z \hat{z}$ in 2D

we can write this in k -space :

$$\tilde{B}_z(k_x, k_y, z) = i \frac{1}{2} \mu_0 d e^{-k_z} \underbrace{\left[\frac{k_y}{k} \tilde{J}_x(k_x, k_y) - \frac{k_x}{k} \tilde{J}_y(k_x, k_y) \right]}_{g(k, z)}$$

$$\text{w/ } k = \sqrt{k_x^2 + k_y^2}$$

and $d \ll z$

(film thickness)

Continuity equation : $\vec{\nabla} \cdot \vec{J} = 0$

$$\rightarrow k_x \tilde{J}_x + k_y \tilde{J}_y = 0$$

$$\tilde{J}_y = - \frac{k_x}{k_y} \tilde{J}_x$$

Together :

$$\tilde{B}_z = i g \frac{\tilde{J}_x}{k} \left(k_y + \frac{k_x^2}{k_y} \right) = i g \frac{\tilde{J}_x}{k_y} k$$

$$\tilde{J}_x = - \frac{i k_y \tilde{B}_z}{k g}$$

$$\tilde{J}_y = \frac{i k_x \tilde{B}_z}{k g}$$

Magneto-rotation :

$$\vec{J} = \vec{\nabla} \times \vec{m}$$

$$\hookrightarrow \quad \therefore \quad J_x = \frac{\partial M_z}{\partial y}, \quad J_y = - \frac{\partial M_z}{\partial x}$$

$$\tilde{J}_x = -i k_y \tilde{M}_z, \quad \tilde{J}_y = i k_x \tilde{M}_z$$

$$\therefore \quad \tilde{M}_z = \frac{\tilde{B}_z}{k g}$$

Current density

Magneto-rotation

$$\tilde{B}_z = -i \frac{1}{2} \mu_0 d e^{-k_z k} \frac{k}{k_x} \tilde{J}_y$$

$$\tilde{B}_z = \frac{1}{2} \mu_0 d e^{-k_z k} k \tilde{M}_z$$

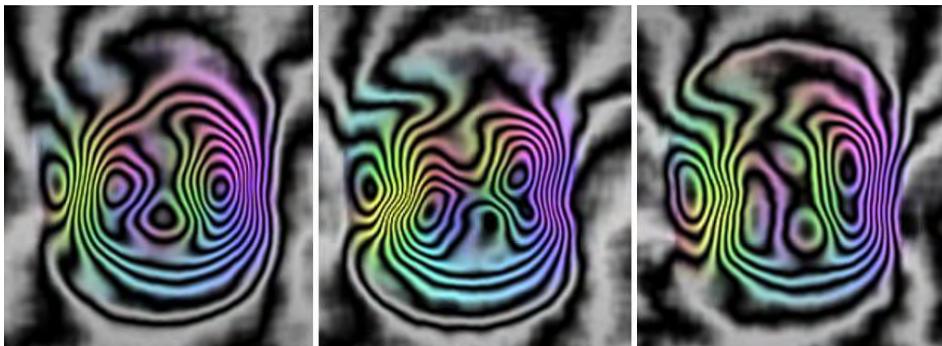
Derivatives along z :

$$\frac{\partial \tilde{B}_z}{\partial z} \propto e^{-k_z} \frac{k^2}{k_x}$$

$$\frac{\partial \tilde{B}_z}{\partial z} \propto e^{-k_z} k^2$$

$$k \propto k_x \propto \frac{1}{\lambda}$$

→ Feature size


$$\text{Normalized to distance} : \frac{\lambda}{z}$$

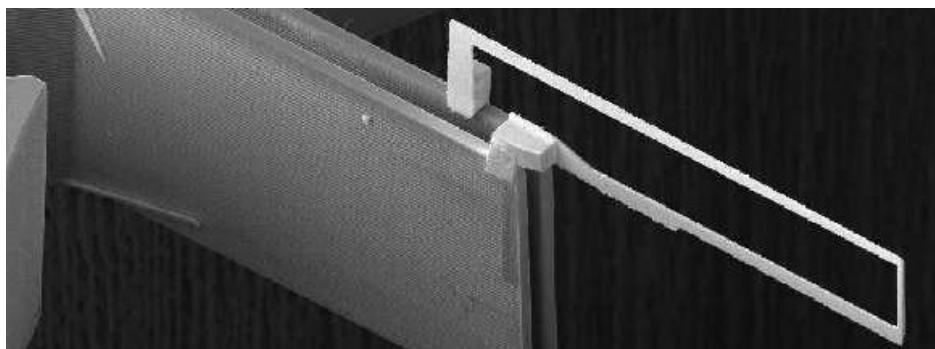
$$\tilde{\beta}_2 \propto e^{-\frac{z^2}{\lambda}}$$

$$\tilde{\beta}_2 \propto \frac{1}{z} \left(\frac{z}{\lambda}\right) e^{-\frac{z^2}{\lambda}}$$

$$\frac{\partial \tilde{\beta}_2}{\partial z} \propto \frac{1}{z} \left(\frac{z}{\lambda}\right) e^{-\frac{z^2}{\lambda}}$$

$$\frac{\partial \tilde{\beta}_2}{\partial z} \propto \frac{1}{z^2} \left(\frac{z}{\lambda}\right)^2 e^{-\frac{z^2}{\lambda}}$$

ELECTRON HOLOGRAPHY: THEORY & PRACTICAL EXAMPLES FROM MEDIUM TO ATOMIC RESOLUTION


R. E. DUNIN-BORKOWSKI

Member of the Helmholtz Association

JÜLICH
Forschungszentrum

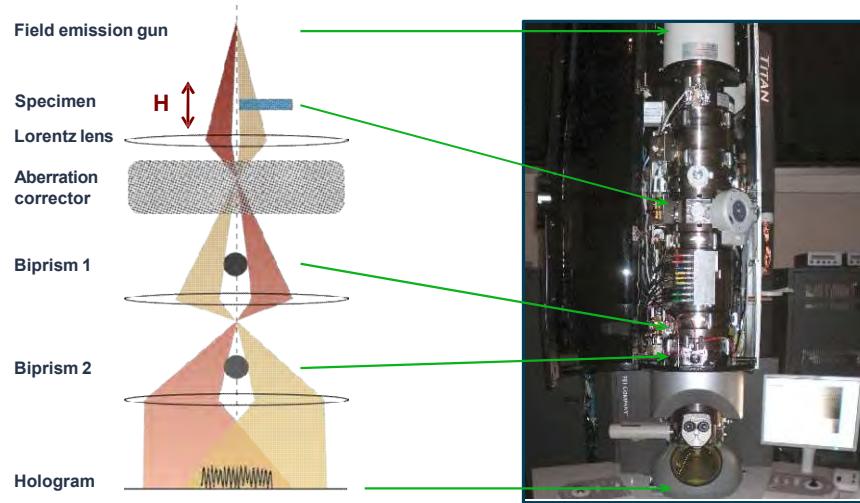
ERNST RUSKA CENTRE
FOR MICROSCOPY AND
SPECTROSCOPY WITH ELECTRONS

ELECTRON HOLOGRAPHY: THEORY & PRACTICAL EXAMPLES FROM MEDIUM TO ATOMIC RESOLUTION

R. E. DUNIN-BORKOWSKI

Member of the Helmholtz Association

JÜLICH
Forschungszentrum


ERNST RUSKA CENTRE
FOR MICROSCOPY AND
SPECTROSCOPY WITH ELECTRONS

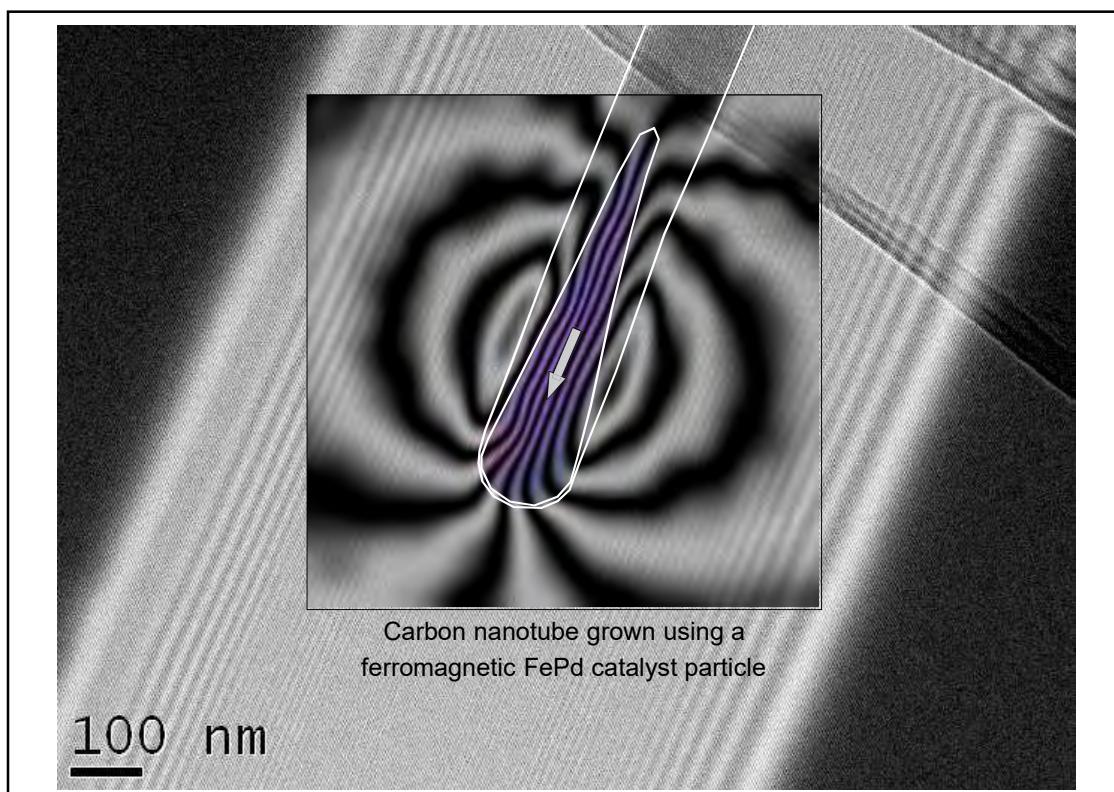
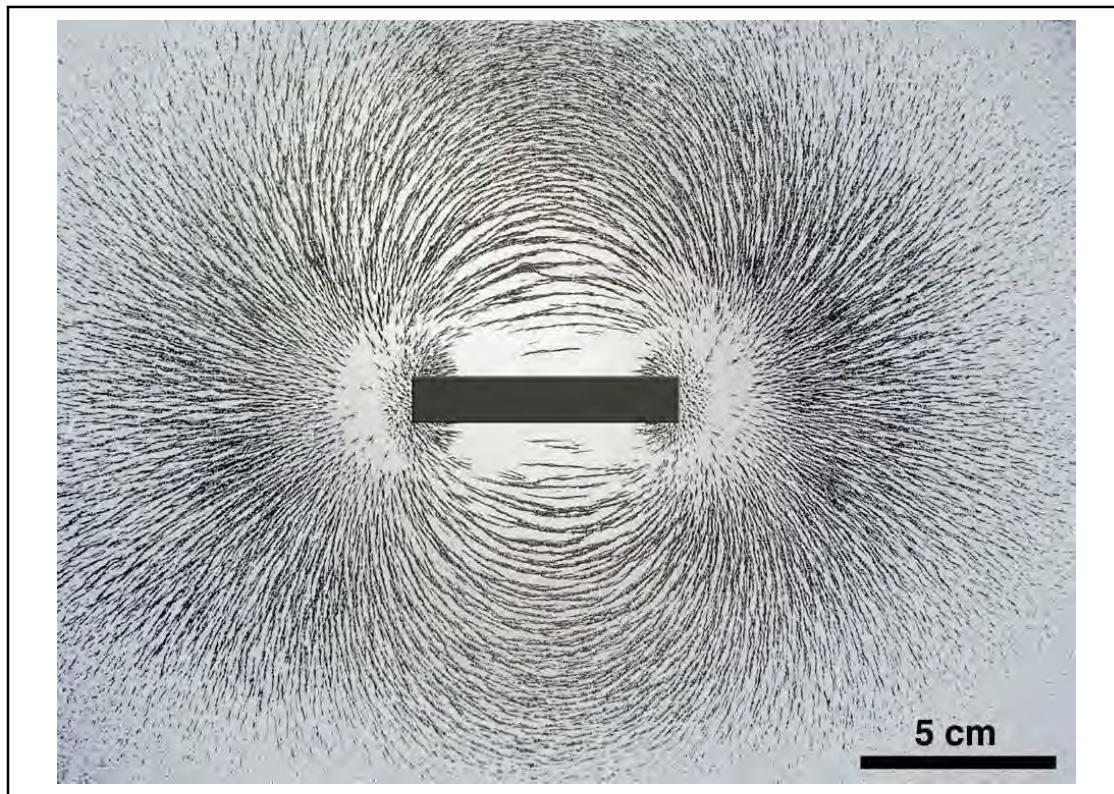
Outline

1. Introduction to off-axis electron holography
2. Historical aspects
3. Off-axis electron holography of magnetic fields
4. Other forms of electron holography

What is off-axis electron holography?

Off-axis electron holography

Electron holography provides access to the phase shift of the electron wave that passes through a specimen in the TEM. The phase shift can be related to the in-plane magnetic induction and to the electrostatic potential within and around the specimen, projected in the electron beam direction.

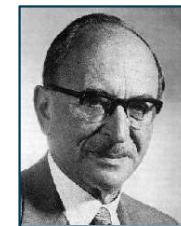


Phase shift

Phase shift:

$$\phi(x, y) = C_E \int_{z=-\infty}^{z=+\infty} V(x, y, z) dz - \left(\frac{e}{\hbar} \right) \int_{z=-\infty}^{z=+\infty} \int_{x=-\infty}^{x=x} B_x(x, y, z) dz dx$$

Sensitive to:

- magnetic fields
- composition
- density
- bonding/ ionicity
- electrostatic fields at depletion layers
- electrostatic fringing fields outside materials


Historical background of electron holography

Electron holography: historical background

1947 Denis Gabor proposes holography ("whole writing") as a means to correct for electron microscope aberrations - [Nobel prize 1971](#).

1936 First commercial TEM - Metropolitan Vickers EM1.

1932 E. Ruska and M. Knoll proposed the idea of an electron microscope - [Nobel prize 1986](#).

Denis Gabor

Electron microscope built by Ruska and Knoll in Berlin in the 1930s.

1927 G.P. Thomson and A. Reid with C.J. Davisson and L.H. Germer showed the electron was a wave - first electron diffraction experiments - [Nobel prize 1937](#).

1897 J.J. Thomson discovers the electron (particle with a certain charge-to-mass ratio) - [Nobel prize 1906](#).

Off-axis electron holography

Gottfried Möllenstedt

(1913-1997)

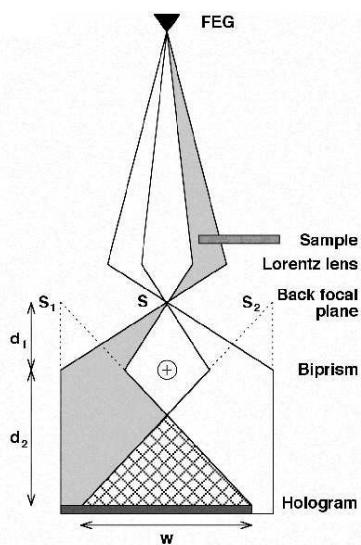
Tübingen, Germany

Invention of electron biprism in 1954

Off-axis electron holography

Akira Tonomura
Hitachi, Japan

Hannes Lichte
Triebenberg, Germany



Giulio Pozzi
Bologna, Italy

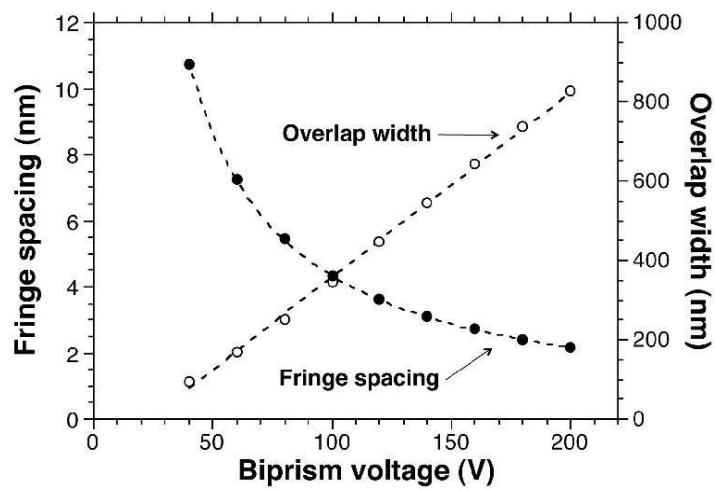
Basis of electron holography

Basis of off-axis electron holography

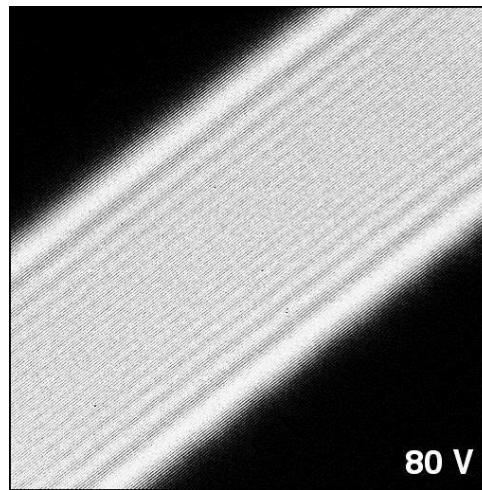
Schematic illustration of set-up for generating off-axis electron holograms.

- If α is the deflection angle introduced by a biprism of radius R and λ is the wavelength of the illumination then:

- the overlap width

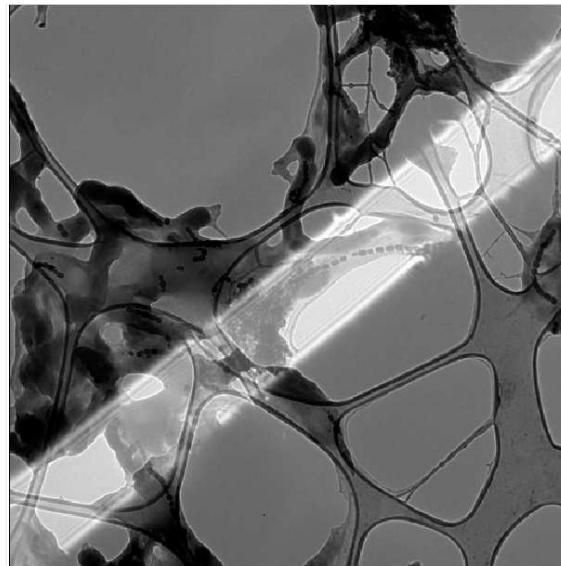

$$w = \frac{2d_1 + d_2}{d_1} \alpha \frac{d_1 d_2}{d_1 + d_2} - R$$

- the interference fringe spacing

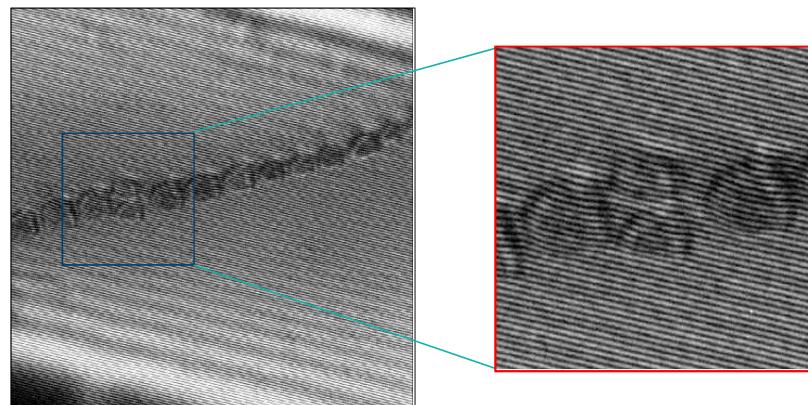

$$s = \frac{\lambda}{2\alpha d_1}$$

- the total number of interference fringes is proportional to the square of the biprism voltage.

Off-axis electron holography



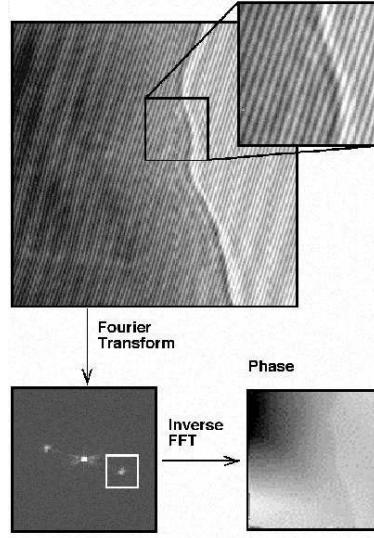
Off-axis electron holography



Acknowledgment: M. R. McCartney

Basis of off-axis electron holography

Off-axis electron hologram of magnetic nanocrystals



Electron hologram acquired in magnetic-field-free conditions
3.9 nm interference fringe spacing

Off-axis electron holography: digital reconstruction

Off-axis electron hologram from thin crystal showing interference fringes within sample

Phase image obtained from inverse Fourier transform of one 'sideband' selected from Fourier transform of hologram

Acknowledgment: M. R. McCartney

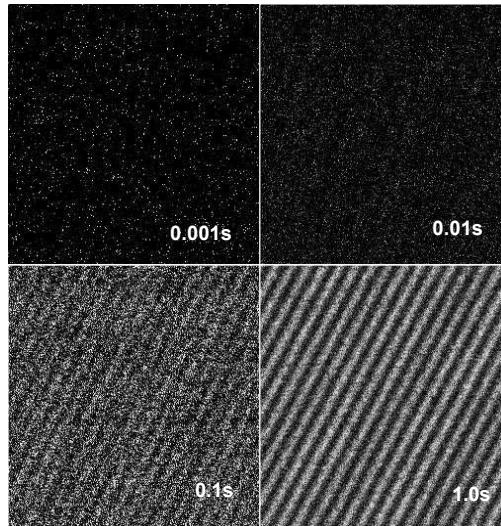
Off-axis electron holography

Conventional bright-field TEM: $\psi_i(\mathbf{r}) = A_i(\mathbf{r}) \exp[i\varphi_i(\mathbf{r})]$

$$I(\mathbf{r}) = |A_i(\mathbf{r})|^2$$

Off-axis electron holography: $I_{hol}(\mathbf{r}) = |\psi_i(\mathbf{r}) + \exp[2\pi i \mathbf{q}_c \bullet \mathbf{r}]|^2$

$$I_{hol}(\mathbf{r}) = 1 + A_i^2(\mathbf{r}) + 2A_i(\mathbf{r}) \cos[2\pi i \mathbf{q}_c \bullet \mathbf{r} + \varphi_i(\mathbf{r})]$$


$$FT[I_{hol}(\mathbf{r})] = \delta(\mathbf{q}) + FT[A_i^2(\mathbf{r})] + \delta(\mathbf{q} + \mathbf{q}_c) \otimes FT[A_i(\mathbf{r}) \exp[i\varphi_i(\mathbf{r})]] + \delta(\mathbf{q} - \mathbf{q}_c) \otimes FT[A_i(\mathbf{r}) \exp[-i\varphi_i(\mathbf{r})]]$$

$$A = \sqrt{\text{Re}^2 + \text{Im}^2}$$

$$\varphi = \tan^{-1} \frac{\text{Im}}{\text{Re}} \%$$

Basis of off-axis electron holography

Each electron travels as a wave but interacts with the detector as a particle

Acknowledgment: M. R. McCartney

The most beautiful experiment in physics

l'esperimento più bello della fisica
<http://l-esperimento-piu-bello-della-fisica.bo.infn.it/>

di che si tratta spiegazione storia bellezza backstage pensare il film

marciano 17 aprile 2012

2 1

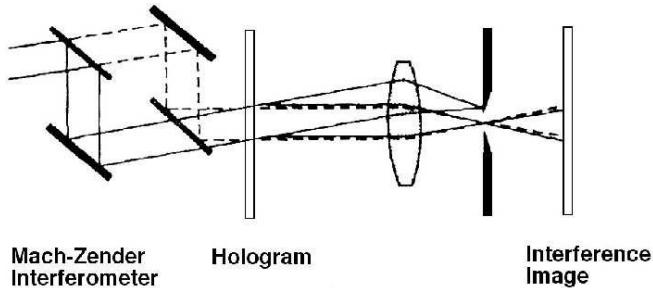
L'interferenza dell'elettrone singolo (1976)

Giulio Pozzi, Gian Franco Miseretti, Pier Giorgio Merli

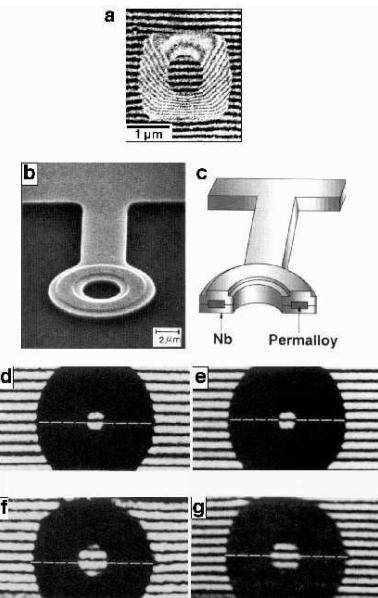
Off-axis electron holography of magnetic fields

Off-axis electron holography of magnetic materials

1965


Akira Tonomura works on field emission electron sources and pioneers the characterization of magnetic materials using electron holography.

Hitachi Advanced Research Laboratory


Off-axis electron holography of magnetic materials

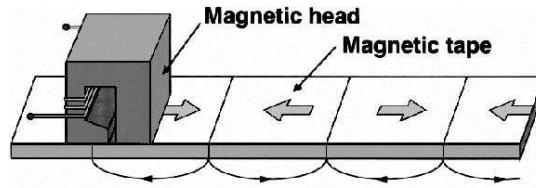
'Optical' reconstruction of electron holograms

Acknowledgment: A. Tonomura

Off-axis electron holography of magnetic materials

Interferogram of a toroidal 40 nm thick film of permalloy.

SEM image and schematic diagram of permalloy toroid covered with superconducting Nb.


Interferograms: (d) and (e) are for a toroid in which the magnetic flux is quantized below T_c in units of $n(h/2e)$, where n is even. For (f) and (g), n is odd. For (d) and (f), $T = 15$ K, whereas for (e) and (g) $T = 5$ K (phase amplification $\times 1$).

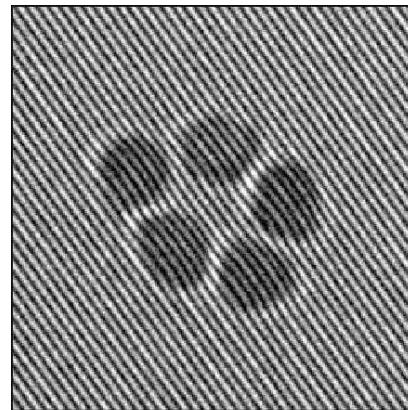
Phys. Rev. Lett. 48, 1443 (1982).

Phys. Rev. A 34, 815 (1986).

Acknowledgment: A. Tonomura

Off-axis electron holography of magnetic materials

45-nm-thick recorded Co film with 5 μm bit length

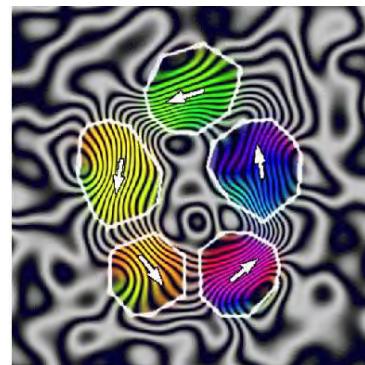

Appl. Phys. Lett. 42, 746 (1983)

Acknowledgment: A. Tonomura

Digital recording and analysis of holograms

Off-axis electron holography of magnetic materials

COBALT NANOPARTICLE RINGS



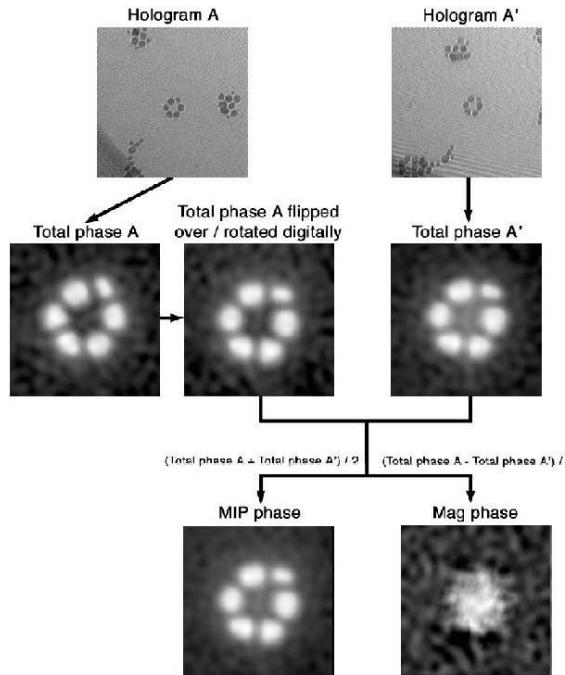
50 nm

Acknowledgment: Alexander Wei

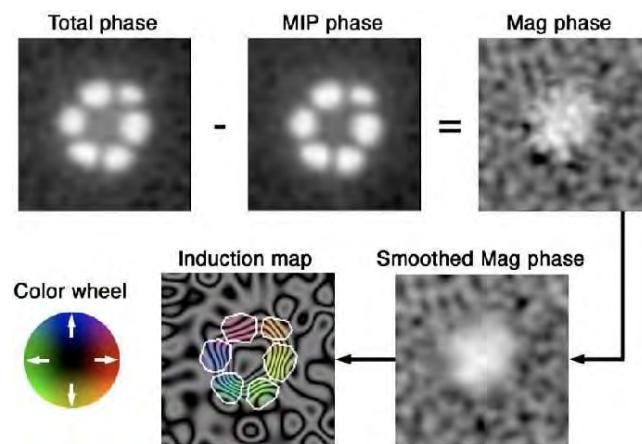
Off-axis electron holography of magnetic materials

COBALT NANOPARTICLE RINGS

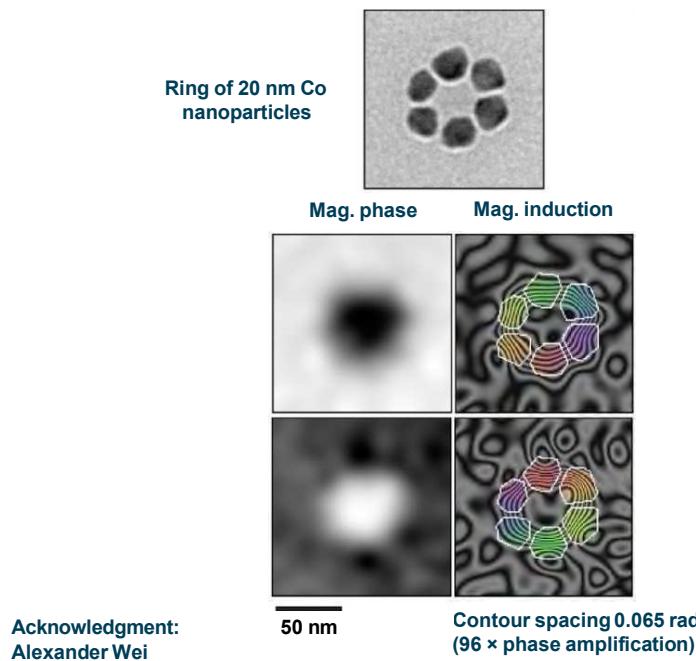
50 nm


Acknowledgment: Alexander Wei

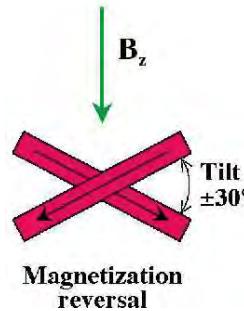
Separation of magnetic contribution to phase

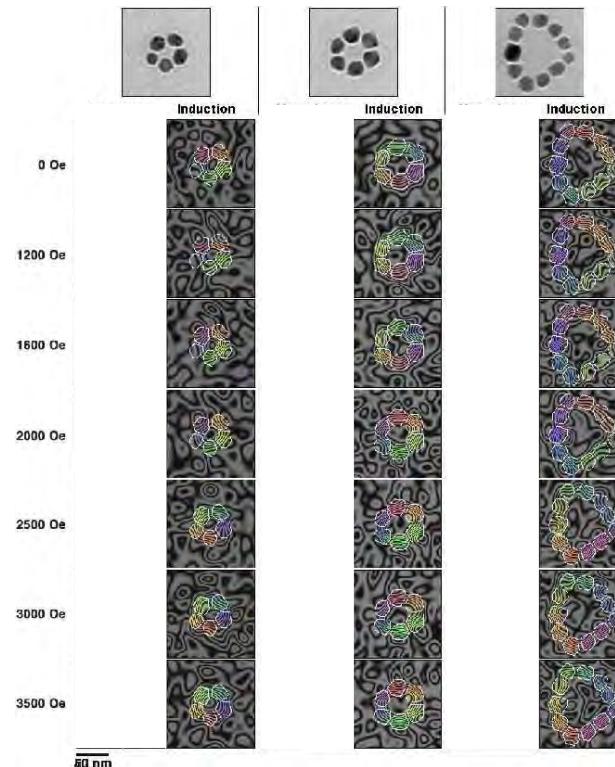

Off-axis electron holography of magnetic materials

- Magnetic and electrostatic contributions can be separated by recording holograms:
 - With opposite magnetization configurations in the sample
 - Before and after turning the sample over
 - Below and above a magnetic transition
 - In different applied magnetic fields
 - At two microscope accelerating voltages


Off-axis electron holography of magnetic materials

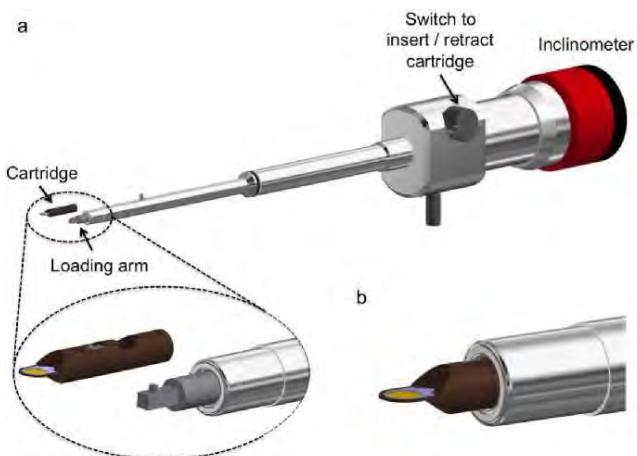
Off-axis electron holography of magnetic materials


Off-axis electron holography of magnetic materials


In situ magnetization reversal

Off-axis electron holography of magnetic materials

APPLICATION OF VERTICAL MAGNETIC FIELD TO TILTED SAMPLE USING FIELD OF CONVENTIONAL OBJECTIVE LENS


Determination
of coercivity of
remanence
by applying
successive
increasing OOP
fields.

Turning specimen holder

Turning specimen holder

(a) Cartridge, on-axis tomography specimen holder and inclinometer. The inset shows the retractable mounting arm. **(b) Position of the cartridge during an experiment.** The cartridge is retracted during sample insertion.

A cartridge-based turning specimen holder with wireless tilt angle measurement for magnetic induction mapping in the transmission electron microscope
P Diehle et al., Ultramicroscopy 220 (2021), 113098.

Turning specimen holder

Cartridge designs for on-axis tomography specimen holder.
 Scale bars: 2 mm. (a) Cartridge for 3 mm grids and SiN chips with $\pm 70^\circ$ tilt range; (b) Cartridge with clamping mechanism for full tilt without shadowing; (c) Cartridge for needle-shaped samples with a diameter of 0.25 mm.

A cartridge-based turning specimen holder with wireless tilt angle measurement for magnetic induction mapping in the transmission electron microscope
P Diehle et al., Ultramicroscopy 220 (2021), 113098.

Turning specimen holder

On-axis tomography holder inserted into the microscope stage with the inclinometer unit attached to its end with wireless recording of the holder tilt angle.

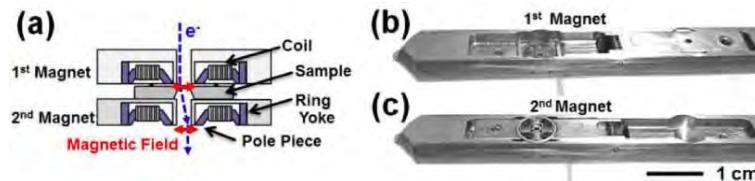
A cartridge-based turning specimen holder with wireless tilt angle measurement for magnetic induction mapping in the transmission electron microscope
P Diehle et al., Ultramicroscopy 220 (2021), 113098.

Specimen holders for *in situ* magnetic studies

TEM specimen holders

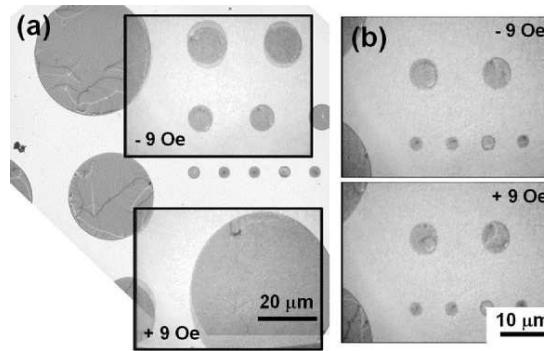
Examples of commercial magnetizing specimen holders

 HUMMINGBIRD
SCIENTIFIC


Tilt Range	Up to $\pm 45^\circ$ depending on objective pole
Sample Size	1x2 mm
In-plane applied magnetic flux density	Up to 900 Gauss, depending on microscope and pole piece
Electron Imaging	From -300 Oe to 1300 Oe applied field depending on microscope and pole piece
Beam Deflection	Integrated passive magnetic compensation

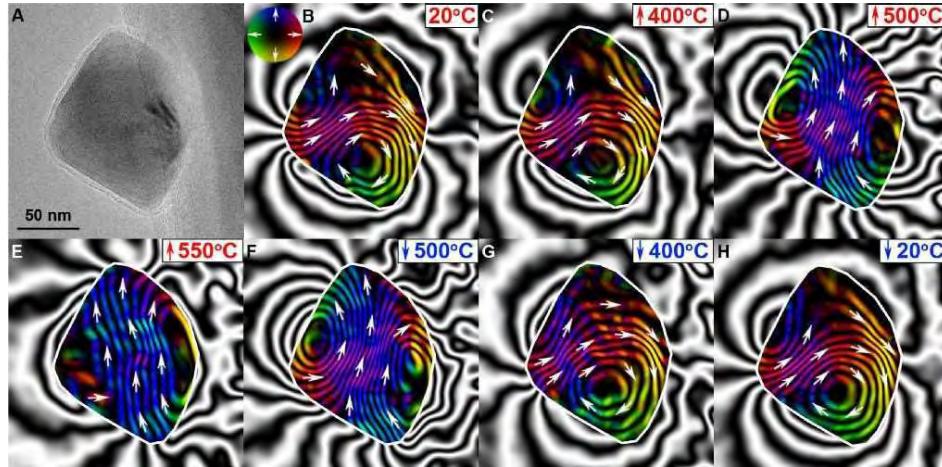
 Met-Build

Kind of TEM:	ARM HR PP Thermo Fisher Observation in Lorenz mode is required.
App. max:	197mT (Ex situ) 50mT (in situ) Different cartridge between in-situ mode and highpower mode
Sample:	φ3 mm

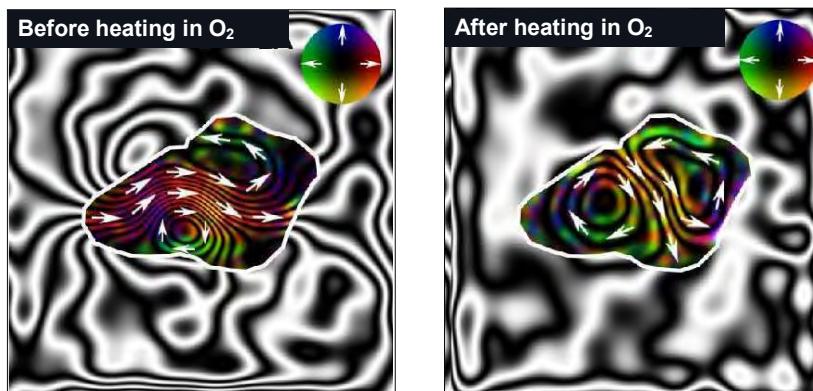

Specimen holders for *in situ* magnetizing experiments

Holder with 2 four-pole electromagnets to compensate for beam deflection. The maximum field is 214 Oe at 500 mA and is homogeneous (100 x 100 μ m).

- (a) Two superposed images with ± 9 Oe.
- (b) Images recorded with beam deflection compensation system.


M Arita et al.
Mater. Trans. 55 (2014), MD201310.

Heating & gas reaction studies of Fe_3O_4 crystals


Electron holography at elevated temperature

Fe_3O_4 grain heated to 550 °C and cooled to room temperature

Acknowledgment: Trevor Almeida

In situ heating in oxygen

Bright-field TEM images and magnetic induction maps of an elongated 250 nm Fe_3O_4 particle acquired before and after *in situ* heating to 700 °C in 9 mbar of O_2 in the TEM.

Acknowledgment: Trevor Almeida

What is really being measured?

Off-axis electron holography of magnetic materials

The difference between the magnetic contribution to the phase shift at any two points is:

$$\Delta\varphi_m = \varphi_m(x_1, y_1) - \varphi_m(x_2, y_2) = -\frac{e}{\hbar} \int_{-\infty}^{+\infty} A_z(x_1, y_1, z) dz + \frac{e}{\hbar} \int_{-\infty}^{+\infty} A_z(x_2, y_2, z) dz$$

For a rectangular loop formed by two parallel electron trajectories crossing the sample at these points and joined, at infinity, by segments perpendicular to the trajectories:

$$\Delta\varphi_m = -\frac{e}{\hbar} \oint \mathbf{A} \cdot d\mathbf{l}$$

Using Stokes' theorem:

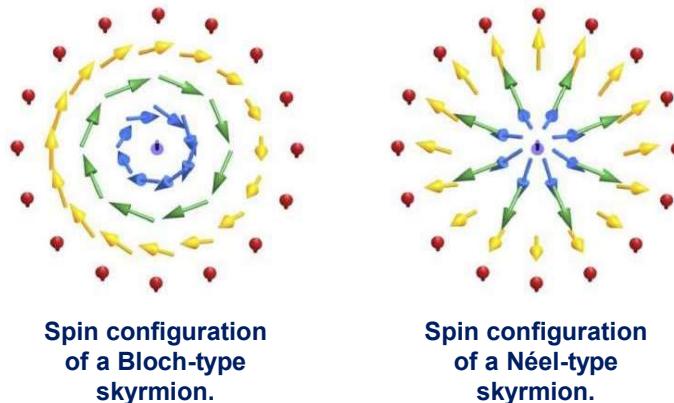
$$\Delta\varphi_m = \frac{e}{\hbar} \iint \mathbf{B} \cdot \hat{\mathbf{n}} dS = \frac{\pi}{\varphi_0} \Phi(S) \quad \text{where } \varphi_0 = \hbar/2e = 2.07 \times 10^{15} \text{ Tm}^2 \text{ is a flux quantum.}$$

Off-axis electron holography of magnetic materials

The relationship between the magnetic contribution to the phase shift and the magnetic induction can be established from the gradient of φ_m

$$\vec{\nabla} \varphi_m(x, y) = \frac{e \#}{\hbar \lambda} B_y^p(x, y), -B_x^p(x, y) \&$$

where $B_j^p(x, y) = \int_{-\infty}^{+\infty} B_j(x, y, z) dz$ are the components of the magnetic induction perpendicular to the electron beam direction projected in the beam direction


In the special case when (i) stray fields surrounding the sample can be neglected, (ii) the sample has a constant thickness and (iii) the magnetic induction does not vary with z within the specimen:

$$\vec{\nabla} \varphi_m(x, y) = \frac{e t \#}{\hbar \lambda} B_y(x, y), -B_x(x, y) \&$$

The separation of electrostatic and magnetic contributions to the phase shift is almost always mandatory in order to obtain quantitative magnetic information from a phase image. The few instances when this extra step may be avoided include the special case of magnetic domains in a thin film of constant thickness.

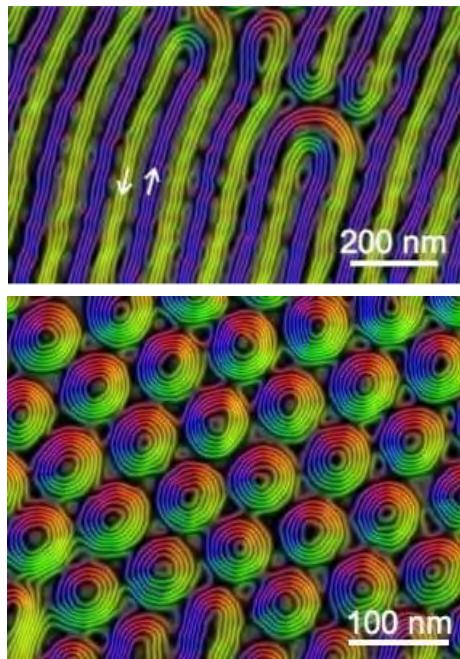
Low temperature studies of skyrmions

Magnetic skyrmions



The 2020 Skyrミonics Roadmap

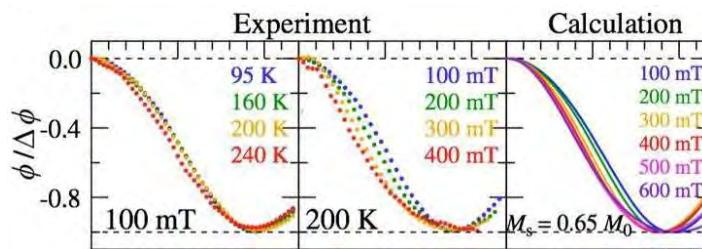
C. Back et al. J. Phys. D: Appl. Phys. 53 (2020) 363001


Magnetic skyrmions

Schematic B-T phase diagram for magnetic skyrmions in B20 FeGe

Regions "H", "Skyrミon" and "FM" denote a helical structure, a skyrmion lattice and a saturated ferromagnetic state, respectively.
The critical temperature is 278.3 K.

Skyrmions in FeGe

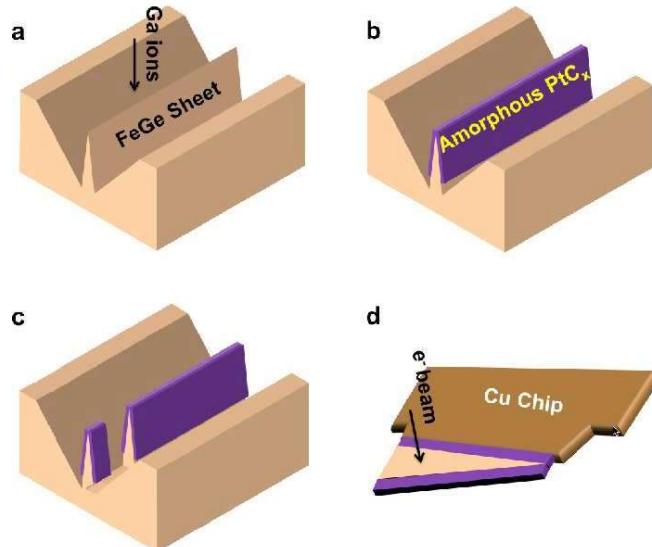


Magnetic induction maps of helical structures and a skyrmion lattice recorded in out-of-plane magnetic fields of 0 and 100 mT at 200 K. The contour spacing is 0.098 rad.

Kiyou Shibata,
Yoshinori Tokura

Magnetic skyrmions in FeGe

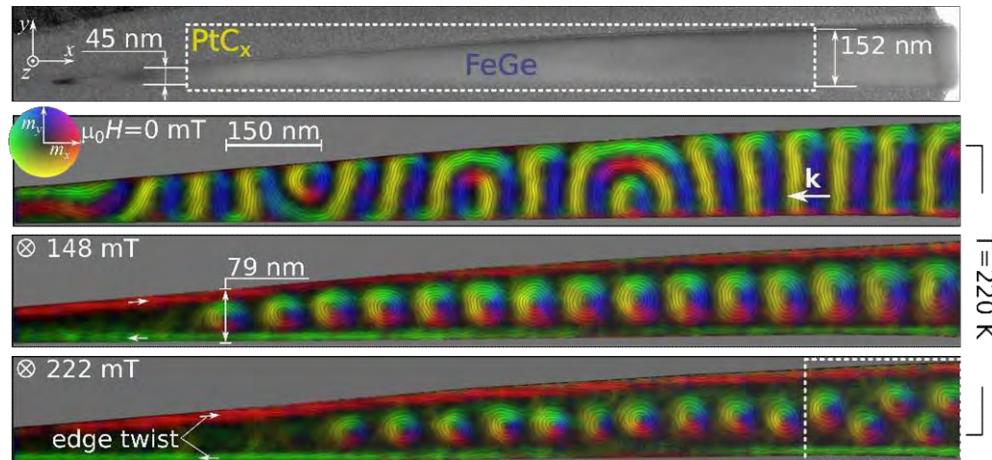
In a skyrmion lattice in FeGe, the detailed skyrmion shape changes with applied field but not with temperature



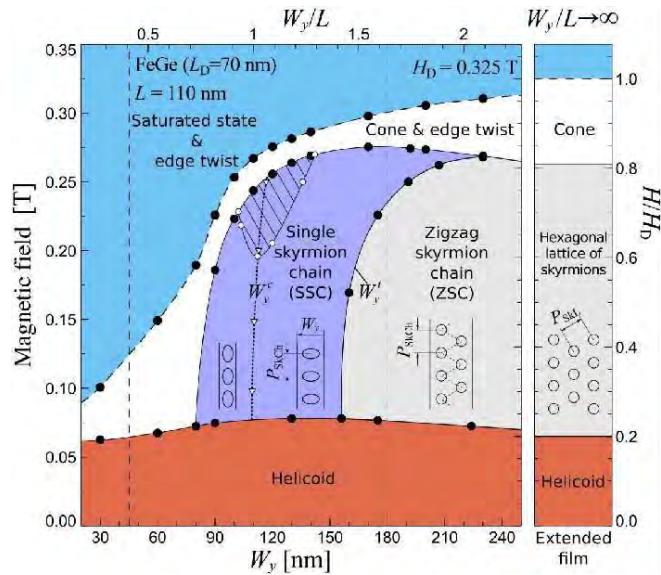
Measurements and calculations of normalized phase distribution across a skyrmion at different temperatures and magnetic fields vs distance from its centre.

Kiyou Shibata, Yoshinori Tokura

Magnetic skyrmions in FeGe

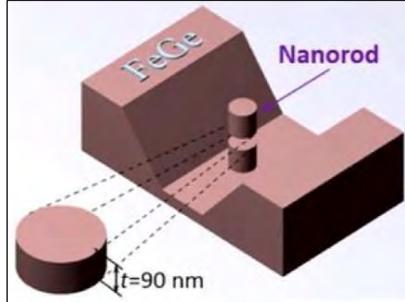

TEM sample preparation by FIB milling

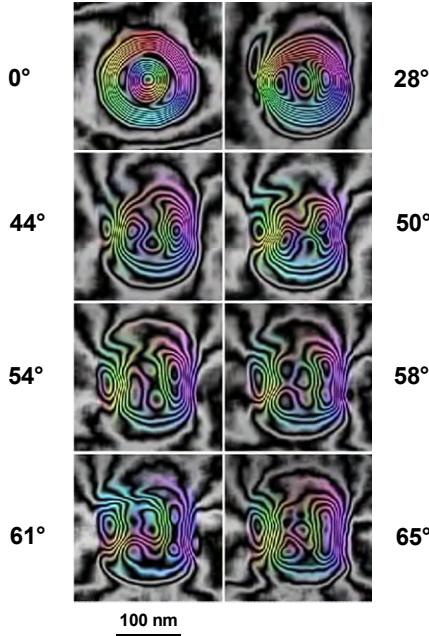
Hai-Feng Du


Skyrmions in FeGe

Magnetic field dependence at 220 K after zero field cooling

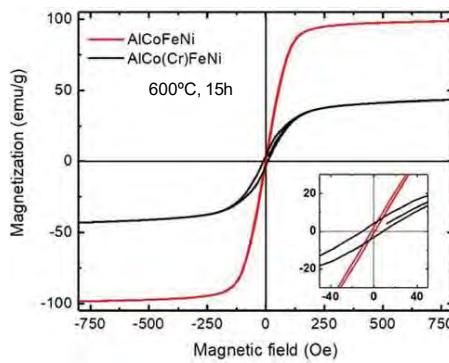
Hai-Feng Du


Magnetic skyrmions in FeGe

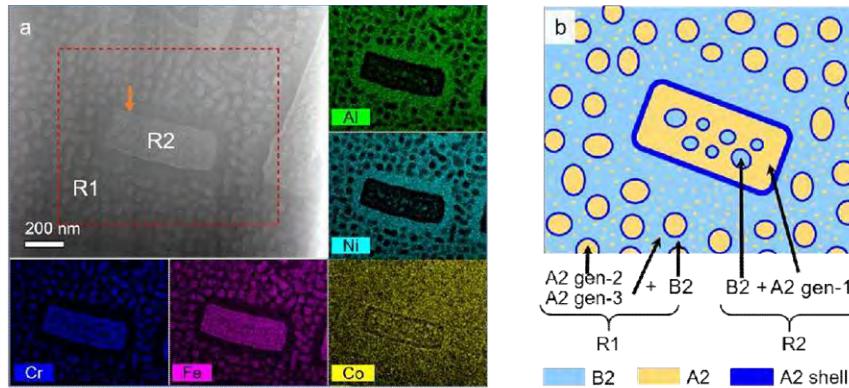

Phase diagram of skyrmions in a nansotriple of B20-FeGe determined from both experimental results and simulations. W_y is the width of the sample and L is its thickness.

Target skyrmion

- Target skyrmion in FeGe


Collaboration with Haifeng Du, Jiadong Zang and colleagues.

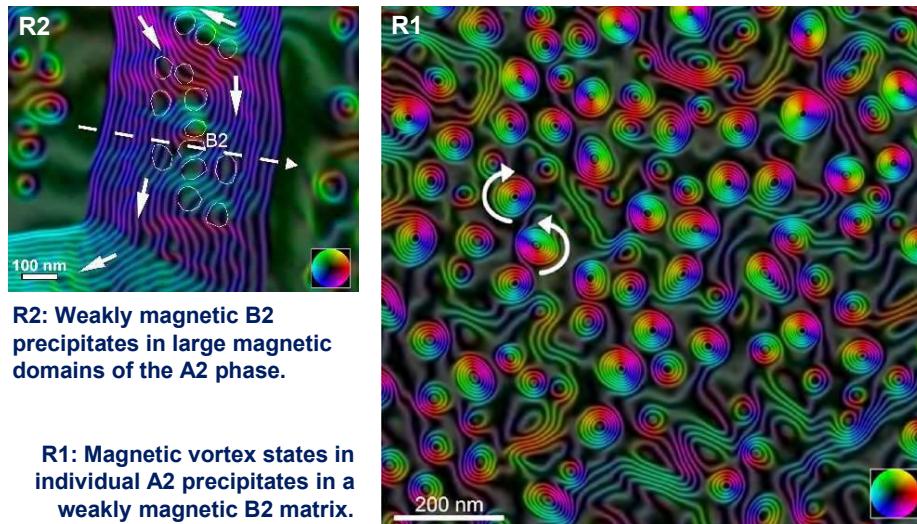
Hierarchical phase separation in magnetic HEAs


Magnetic high entropy alloys

Hierarchical phase separation in $\text{AlCo}_{0.5}\text{Cr}_{0.5}\text{FeNi}$ high entropy alloys

Q. Lan, A. Kovács, J. Caron, H. Du, D. Song, S. Dasari, B. Gwalani,
V. Chaudhary, R. V. Ramanujan, R. Banerjee, R. E. Dunin-Borkowski
iScience 25 (2022), 104047

Magnetic high entropy alloys



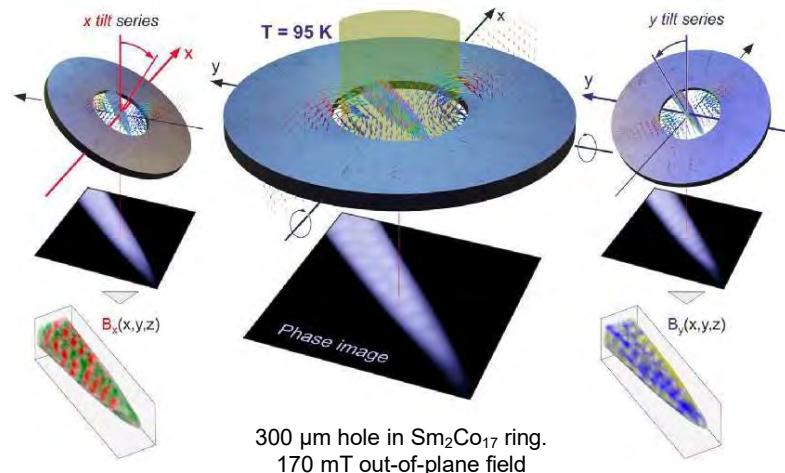
HAADF STEM image and Al, Cr, Fe, Co and Ni EDXS elemental maps of B2 (AlNiCo-rich; CsCl structure) and A2 (FeCrCo-rich; disordered BCC) phases.

R1: fine and medium A2 precipitates in a B2 matrix.
R2: B2 precipitates in an A2 matrix.

Q. Lan, A. Kovács, J. Caron, H. Du, D. Song, S. Dasari, B. Gwalani, V. Chaudhary, R. V. Ramanujan, R. Banerjee, R. E. Dunin-Borkowski, *iScience* 25 (2022), 104047

Magnetic high entropy alloys

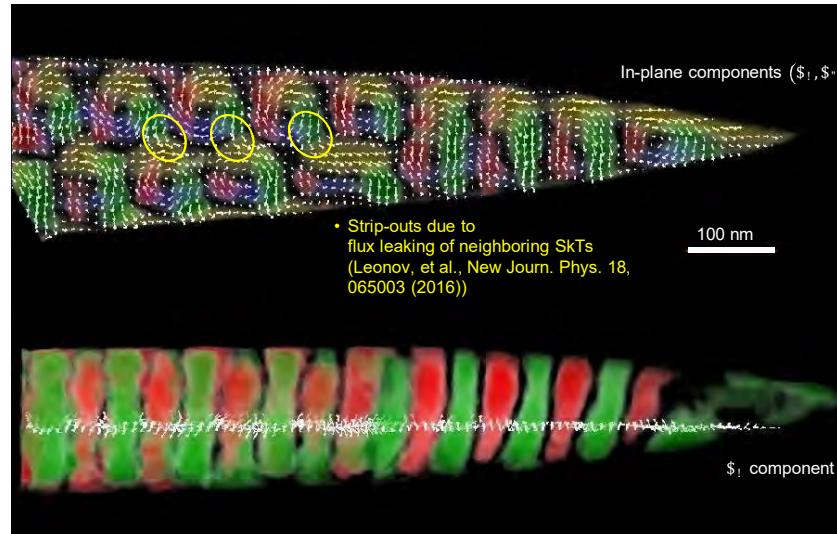
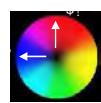
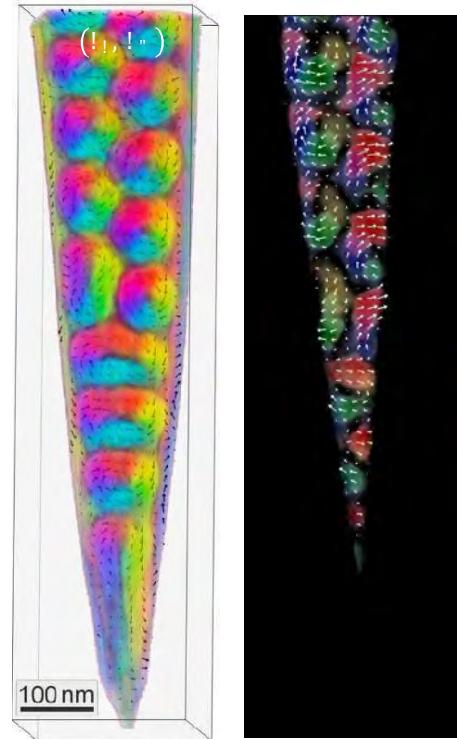
R2: Weakly magnetic B2 precipitates in large magnetic domains of the A2 phase.


R1: Magnetic vortex states in individual A2 precipitates in a weakly magnetic B2 matrix.

Q. Lan, A. Kovács, J. Caron, H. Du, D. Song, S. Dasari, B. Gwalani, V. Chaudhary, R. V. Ramanujan, R. Banerjee, R. E. Dunin-Borkowski, *iScience* 25 (2022), 104047

3D magnetic vector field holographic tomography

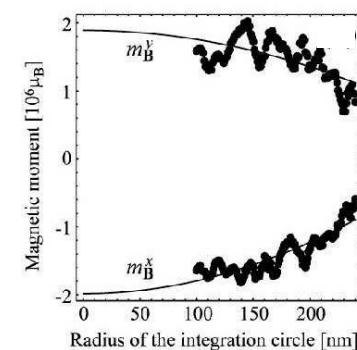
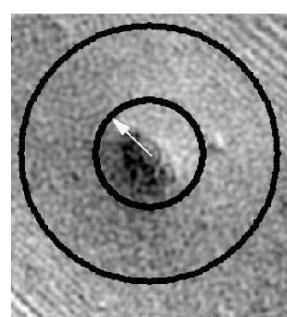
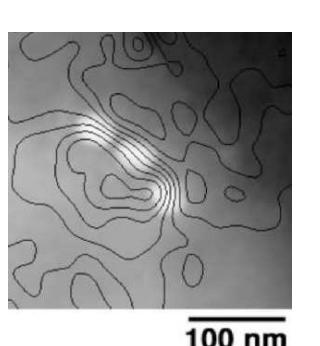
SKYRMIONS IN 3D IN AN APPLIED FIELD




Two tilt axes, applied field and low temperature.
Cryo holographic vector-field electron tomography of skyrmion tubes in FeGe.

D. Wolf, S. Schneider, U. K. Rößler, A. Kovács, M. Schmidt, R. E. Dunin-Borkowski, B. Büchner, B. Rellinghaus, A. Lubk, arXiv:2101.12630v1

SKYRMIONS IN 3D

- Local deviations from Bloch character.
- Collapse of skyrmion texture at surfaces.
- Tilts of elongated SkTs at the tip.
- Correlated modulations of SkTs along their axes.
- D. Wolf *et al.*, arXiv:2101.12630v1

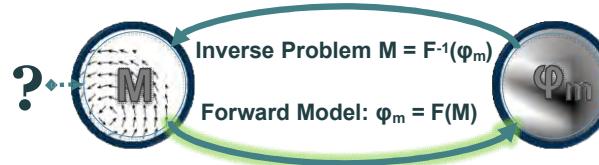




Model-independent measurement of magnetic moment

Model-independent measurement of magnetic moment

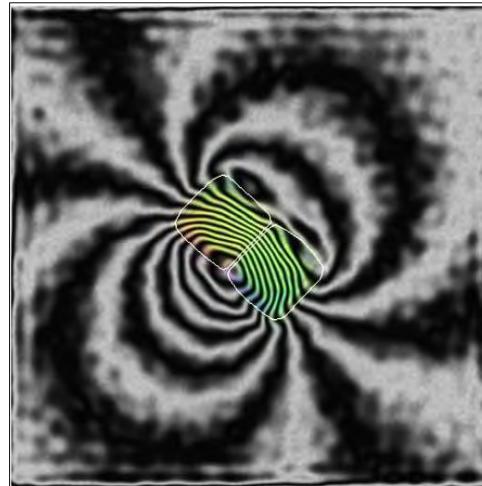
$$\mathbf{m} = \iiint \mathbf{M}(\mathbf{r}) d^3\mathbf{r} \quad \mathbf{m}_B = \frac{1}{\mu_0} \iiint \mathbf{B}(\mathbf{r}) d^3\mathbf{r} \quad \mathbf{m}_B = \left[\frac{1}{2}m_x, \frac{1}{2}m_y, m_z \right]$$

$$\Delta \mathbf{m}_B^{\text{tot}} = \frac{1}{\mu_0} \left\{ \frac{\hbar}{e} [1 - \beta \sin(\gamma)] (\hat{\mathbf{z}} \times \mathbf{k}) - \mathbf{B}_p(\mathbf{d}) + \sum_{i=1}^N \mathbf{B}_p^{(i)}(\rho_i) \right\} \pi R_c^2$$

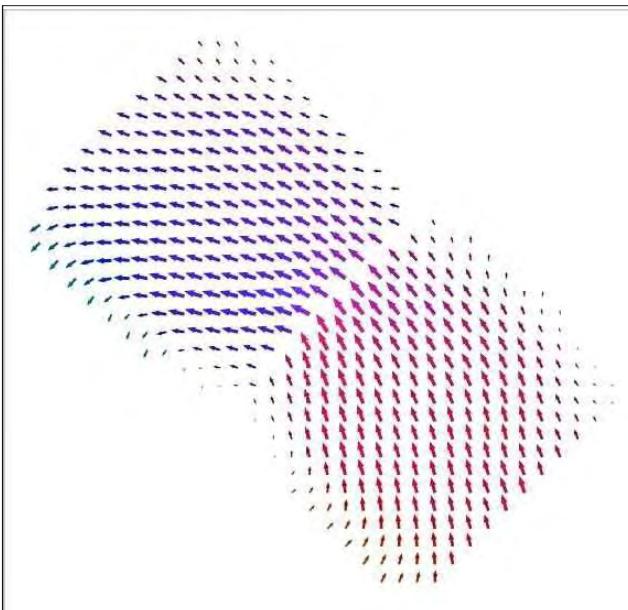


$(2.74 \pm 0.18) \cdot 10^6 \mu_B$ oriented at $(136 \pm 4)^\circ$

Acknowledgment: Marco Beleggia

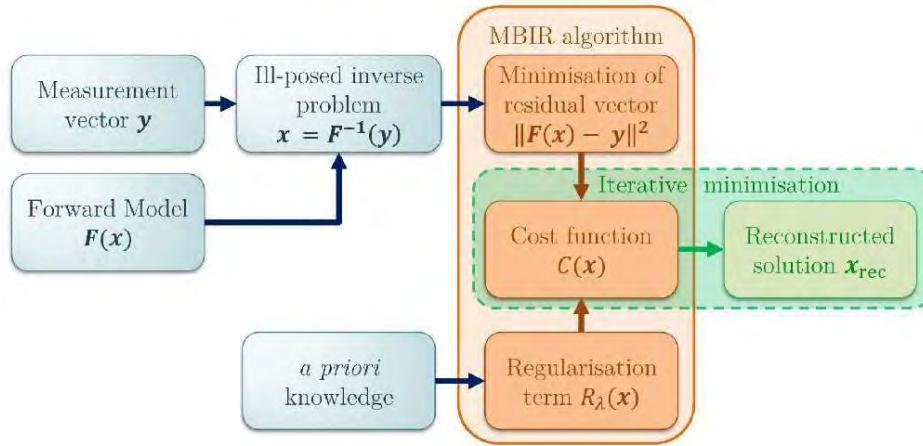

Magnetization as an inverse problem

Retrieval of M and the inverse problem



Cubic magnetite nanoparticles with truncated corners

Magnetic induction map



Retrieval of M and the inverse problem

Retrieved projection
of M using
regularization and
boundary moments
for two 68 nm
magnetite (Fe_3O_4)
cuboctahedra.

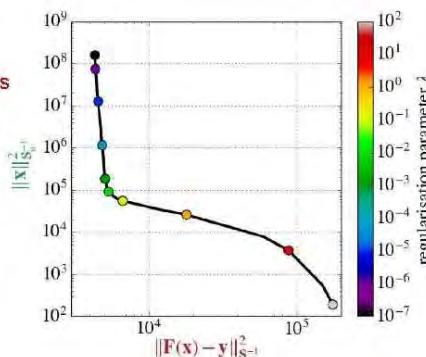
Retrieval of M and the inverse problem

A forward model $F(x)$ maps a physical quantity x onto data described by a measurement vector y . The ill-posed inverse problem is substituted by a minimisation problem. Together with a regularisation term $R_\lambda(x)$, which can be based on *a priori* knowledge, a cost function $C(x)$ is constructed and minimised using a model-based iterative algorithm to find the best-fitting solution x_{rec} .

Retrieval of M and the inverse problem

L-curve analysis

Costfunction:


$$C(x) = \|Fx - y\|_{S_\epsilon^{-1}}^2 + \lambda \cdot \|x\|_{S_\alpha^{-1}}^2$$

The regularisation parameter λ balances:

- Compliance with the measurements
- Smoothness of the magnetisation

How to find the best value for λ ?

→ L-curve analysis

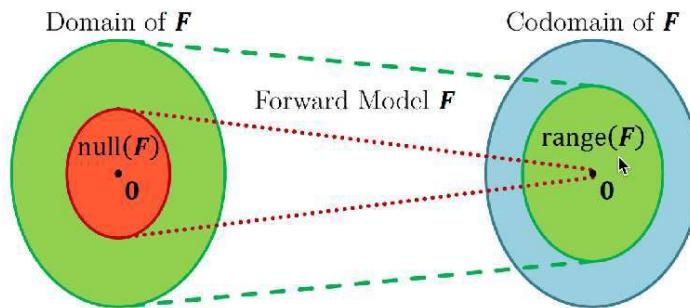
Retrieval of M and the inverse problem

Input:

- Mask that specifies the locations of magnetised objects.
- The direction and distance to the perturbed reference wave.
- Confidence array that specifies other identifiable artefacts.

J. Caron, Ph.D. thesis, RWTH Aachen University.

Retrieval of M and the inverse problem


Considerations:

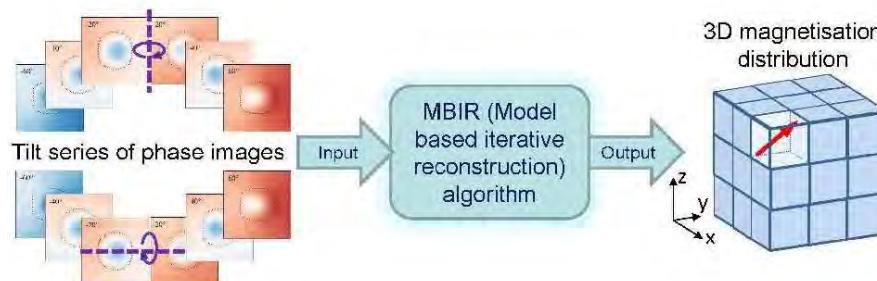
- Sources of magnetisation outside the field of view can be taken into account by introducing buffer pixels.
- The regularisation strength and the choice of mask significantly influence the resolution of the reconstruction.
- Care required with regularisation to take into account the null space.

J. Caron, Ph.D. thesis, RWTH Aachen University.

Uniqueness and the null space

Forward model

- The null space $\text{null}(F)$ is the set of all magnetic states x that are mapped onto the zero vector $y = 0$, i.e., no phase is produced.
- The range (F) contains all measurement vectors y that can be produced by all magnetisation state vectors x .
- Not all measurements y in the codomain are necessarily attainable by F .
- The measurements y can lie outside of $\text{range}(F)$, especially if they are noisy, i.e., no magnetic state x exists that is able to produce the corresponding phase images.

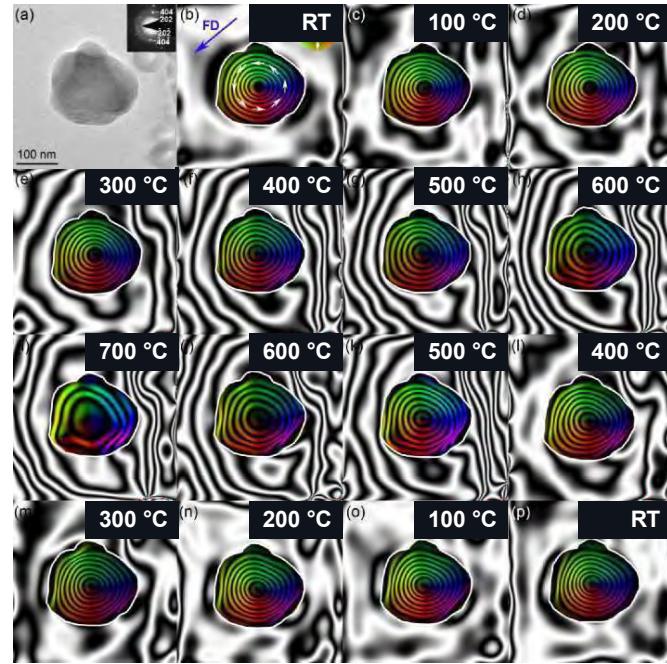

Three-dimensional magnetization reconstruction

3D magnetisation reconstruction

Reconstruction of 3-dimensional magnetisation distributions:

- Requires fully tomographic approach
- 2 (optimally) orthogonal tilt series of phase images

Thesis → Simulated tilt series as input for the MBIR algorithm


Electron-beam-induced charging

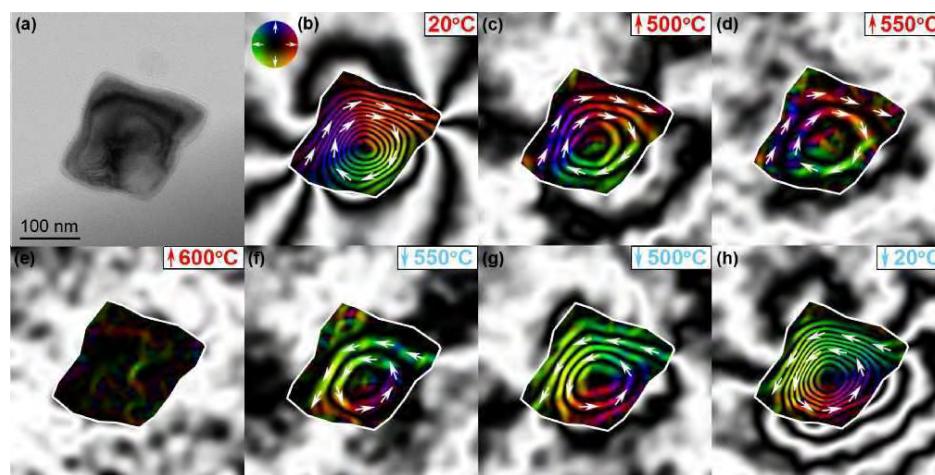
Electron holography at elevated temperature

Electron hologram acquisition during *in situ* heating in vacuum

Problem:

Temperature-dependent electron-beam-induced specimen charging

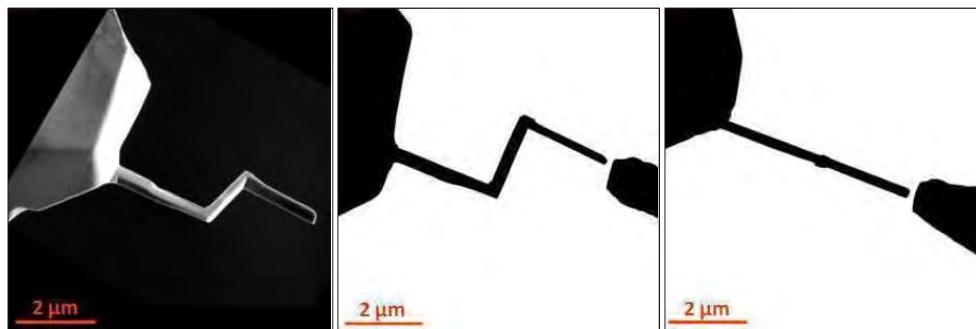
Trevor Almeida


Quantitative and *in situ* mapping of magnetic fields at the nanoscale

Solution:

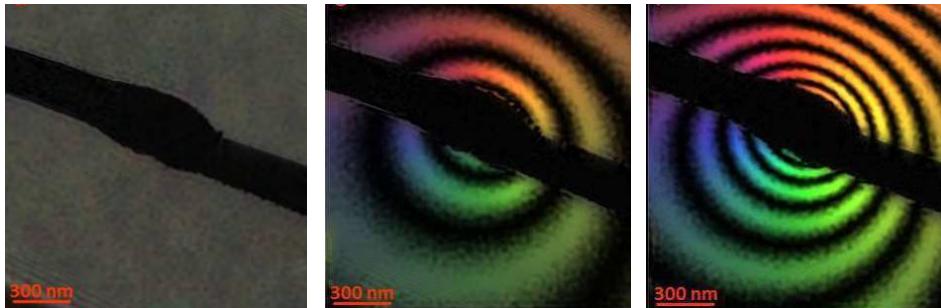
Calculate and subtract electrostatic (mean inner potential + charging) contribution to phase at every *temperature*

Electron holography at elevated temperature

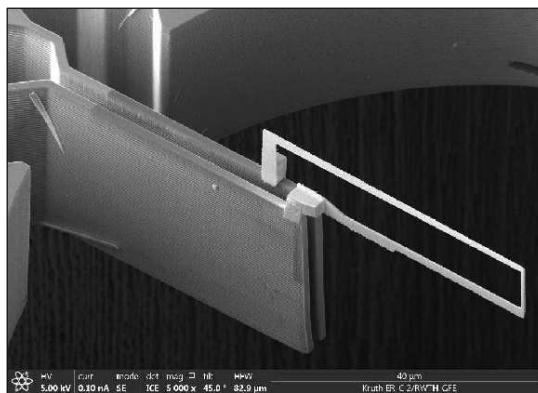

Fe₃O₄ grain heated to 600 °C and cooled to room temperature

T. Almeida, A. Muxworthy, W. Williams

Oersted magnetic field of a current


Magnetic field of a current-carrying wire

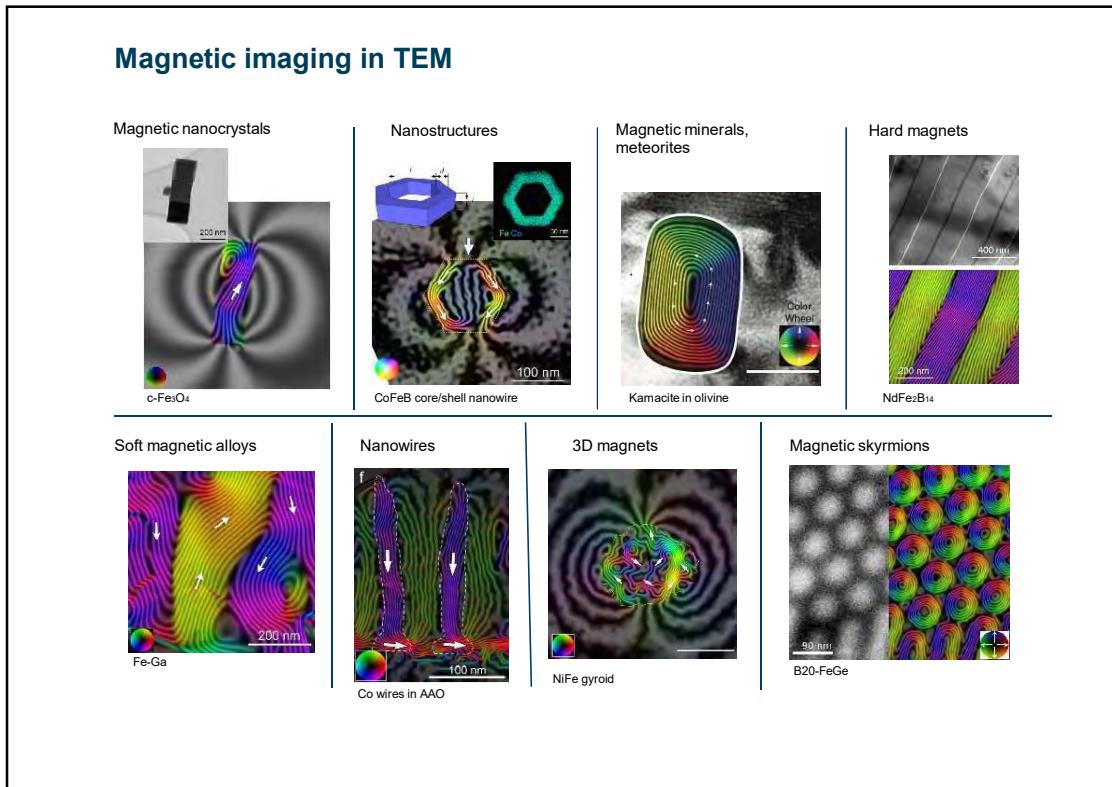
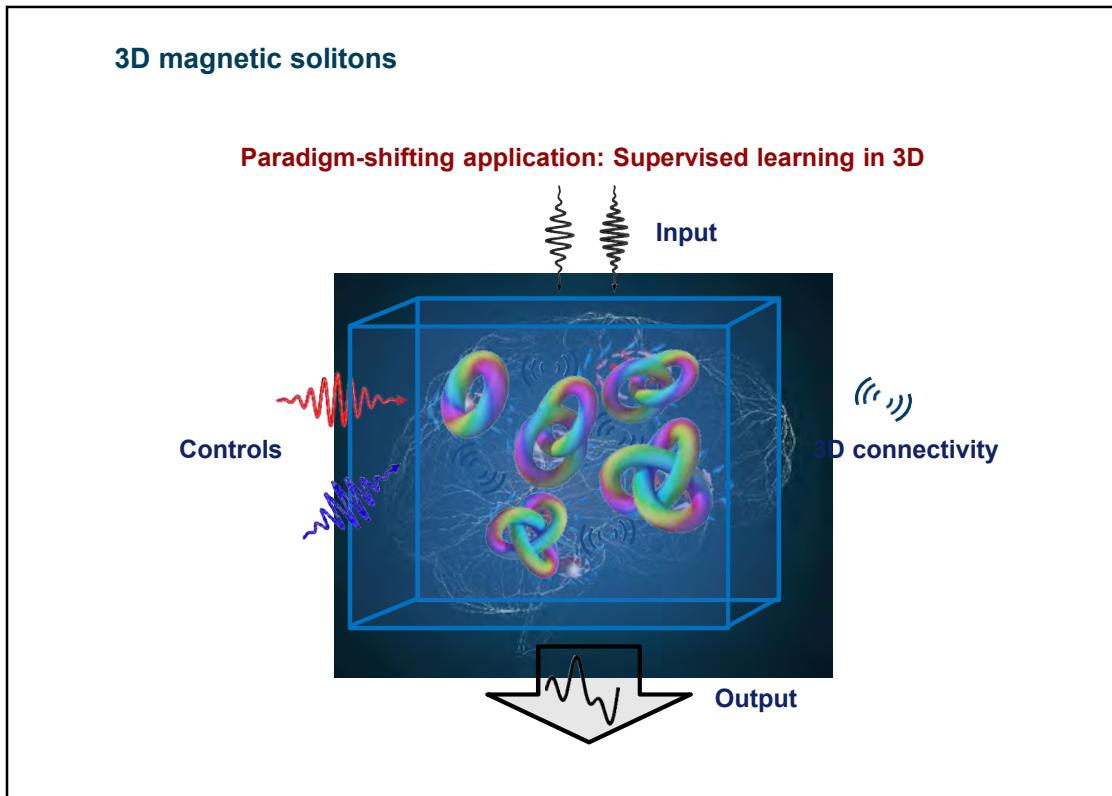
FIB milling and bright-field TEM images of Au needle and hook in a TEM-STM specimen holder with the tilt set first to 70° and then to 0° (with the hook arm parallel to the electron beam direction).


Magnetic field of a current-carrying wire

Experimental 8-times-amplified phase contour maps recorded for currents of 0, 2 and 4 mA through the wire

Examples

Specialized devices



Sample: P. Lu
U-Shape

Acknowledgment: Max Kruth

Summary

- Medium resolution off-axis electron holography allows magnetic and electrostatic fields to be quantified to nm spatial resolution, both inside and outside materials.
- Magnetic and mean inner potential effects must often be separated from each other.
- Digital analysis of holograms is important for the smallest nanostructures.
- High quality experimental data, comparisons with simulations and thin undamaged specimens are essential.

Vision


Acknowledgments

- András Kovács, Fengshan Zheng, Thibaud Denneulin, Marco Beleggia
- Michalis Charilaou, Jörg Löffler, Jordi Arbiol, Josep Nogués, Luyan Yang
- Dongsheng Song, Teresa Wessels, Benjamin Zingsem, Michael Farle
- Jan Caron, Patrick Diehle, Jörn Ungermann, Martin Riese, Ulrich Poppe
- Nikolai Kiselev, Andrii Savchenko, Stefan Blügel, Filipp Rybakov
- Haifeng Du, Jiadong Zang, Zi-An Li, Kiyou Shibata, Yoshinori Tokura
- Daniel Wolf, Sebastian Schneider, Bernd Rellinghaus, Axel Lubk
- Qianqian Lan, Rajarshi Banerjee, Raju Ramanujan, Penghan Lu
- Vadim Migunov, Janghyun Jo, Giulio Pozzi, Amir Tavabi, Max Kruth
- Martin Salinga, Xuan Thang Vu, Sebastian Walfort, Benedikt Kersting
- Karina Ruzaeva, Alexander Clausen, Dieter Weber, Lei Jin, Knut Urban

Funding

- European Union's Horizon 2020 Research and Innovation Programme:

- Grant No. 856538, project "3D MAGiC"
- Grant No. 823717, project "ESTEEM3"
- Grant No. 766970, project "Q-SORT"
- Grant No. 606988, project "SIMDALEE2"

- Deutsche Forschungsgemeinschaft:


- Project-ID 405553726 – TRR 270 "HoMMage"

- DARPA TEE program through grant MIPR# HR0011831554

- SFB 917 NanoSwitches Collaborative Research Centre

Characterizing magnetic materials using inelastic Brillouin light scattering (BLS) technique

PING CHE

UNITÉ MIXTE DE PHYSIQUE CNRS, THALES, UNIVERSITÉ PARIS-SACLAY,
PALAISEAU 91767, FRANCE

16th – 18th November, EPFL

Contents

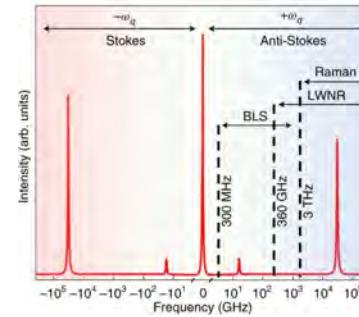
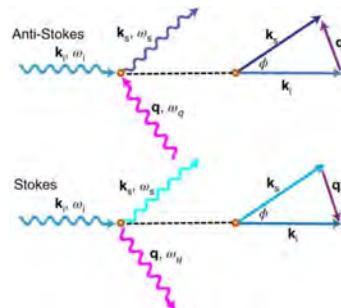
I. The basic principle of Brillouin light scattering (BLS) technique:

- 1. General aspects of Brillouin scattering;
- 2. Brillouin scattering for magnonics research.

II. Multiple functions of BLS technique:

- 1. Spatial-resolved function;
- 2. Wavevector-resolved function;
- 3. Time-resolved function;
- 4. Phase-resolved function.

III. Examples of characterizing magnetic materials hosting non-collinear spin textures using BLS:



- 1. Characterizing basic magnetic properties of materials;
- 2. Investigation of Bose–Einstein condensation (BEC) of magnons;
- 3. Investigation of magnon band structure with BLS;
- 4. Investigation of local phase diagrams of chiral magnets with BLS.

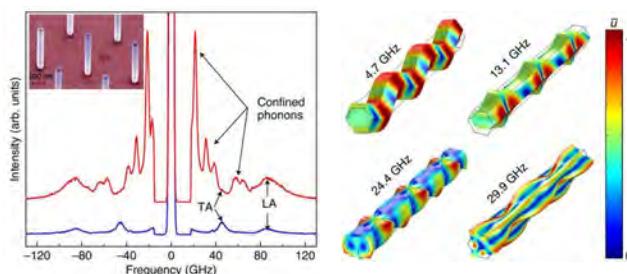
Lab demonstration

I. The basic principle of BLS technique: 1. General aspects of Brillouin scattering

Brillouin scattering:

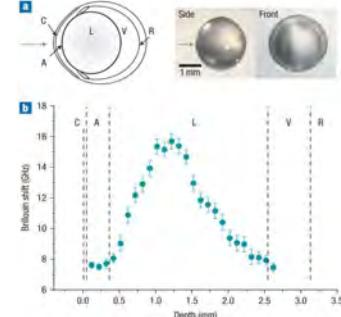
- Inelastic scattering: the kinetic energy of an incident particle is not conserved. Part of the energy get lost or gained from the scattering process with another quasi-particles, e.g. phonon, magnon.
- Energy and moment conservation: $\hbar\omega_q = \hbar\omega_i \pm \hbar\omega_s$, $\hbar\mathbf{k}_q = \hbar\mathbf{k}_i \pm \hbar\mathbf{k}_s$.
- Stokes (absorption) and anti-Stokes (emission) process.

• M. Cardona and G. Güntherodt, Light Scattering in Solids II: Basic concepts and Instrumentation, Volume 50, Springer-Verlag, 1982.
F. Kargari, and A. A. Balandin, *Nat. Photon.*, **15**, 720–731 (2021).


THALES

13

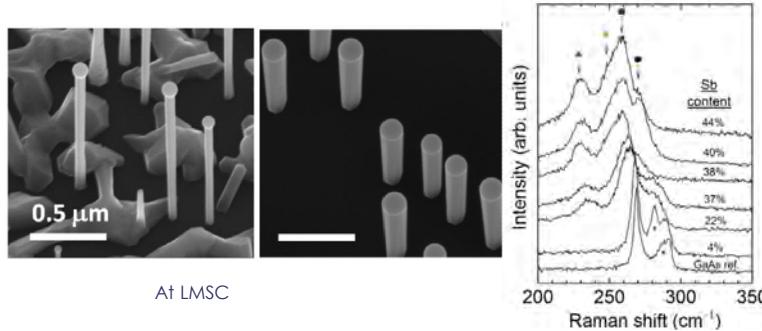
I-1. General aspects of Brillouin scattering: broad application


Observation of phonon confinement in nanostructured materials

- F. Kargari, et al. *Nat. Commun.*, **7**, 13400 (2016)

Biomechanical measurement of the crystalline lens in a mouse eye

- G. Scarcelli, and S. H. Yun, *Nat. Photon.*, **2**, 39–43 (2008)


14

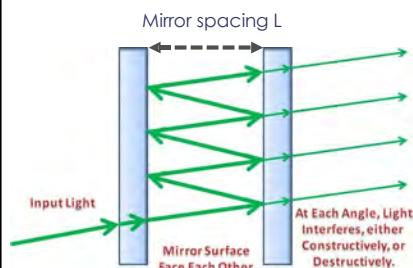
CNRS

université
PARIS-SACLAY

THALES

I-1. General aspects of Brillouin scattering: difference with Raman scattering

What is the difference between Brillouin scattering and Raman scattering?



université
PARIS-SACLAY

E. Alarcón-Lladó, et al., Nanotechnology 24, 405707 (2013).

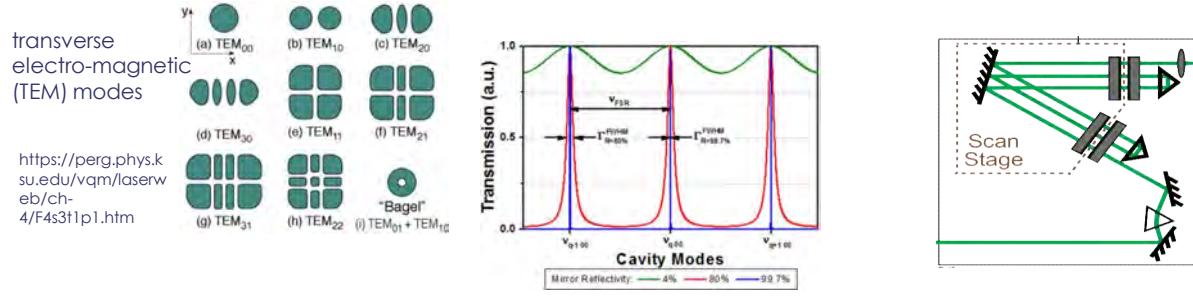
THALES

I-1. General aspects of Brillouin scattering: the Fabry-Perot interferometer

The waves undergo either constructive or destructive interference.

- Constructive interference when the resonator length L is equal to an integer multiple of half the wavelength, $q\lambda/2$. q is the mode order of the longitudinal direction.
- All other wavelengths that do not fit this criteria are not supported by the resonator and destructively interfere.

université
PARIS-SACLAY


THALES

I-1. General aspects of Brillouin scattering: the Fabry-Perot interferometer

Only the frequencies corresponding to the constructive interference can come out of the resonator:

$$\triangleright \nu_{qmn} = \frac{c}{2L} \left[q + \frac{1}{\pi} (m + n + 1) \cos^{-1} \sqrt{g_1 g_2} \right]$$

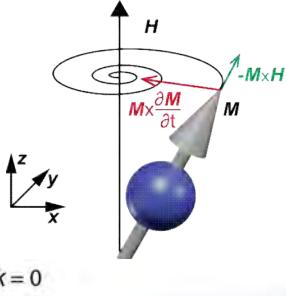
Here, m and n are the mode numbers of the TEM mode, c is the speed of light, $g_{1,2} = 1 - \frac{L}{R_{1,2}}$ corresponding to the radii of the curvature of the mirrors.

I. The basic principle of BLS technique: 2. Brillouin scattering for magnonics research

Ferromagnetism:

➤ Magnetization $\mathbf{M} = \frac{\sigma_{\Delta V} \mathfrak{M}}{\Delta V}$, $\sigma_{\Delta V} \mathfrak{M}$ is the vector sum of the magnetic moments in the volume ΔV .

➤ The relation between the magnetization and the applied field is defined as susceptibility tensor $\mathbf{M} = \chi \otimes \mathbf{H}$


➤ $\mathbf{H}_{\text{eff}} = \mathbf{H}_{\text{ext}} + \mathbf{H}_{\text{exchange}} + \mathbf{H}_{\text{dipole}} + \mathbf{H}_{\text{DMI}} + \dots$

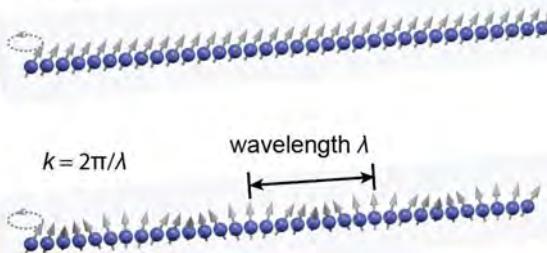
➤ $\mathbf{H}_{\text{eff}} = -\frac{1}{\mu} \frac{\partial E_{\text{tot}}}{\partial \mathbf{M}}$

➤ $E_{\text{tot}} = E_{\text{ext}} + E_{\text{exchange}} + E_{\text{dipole}} + E_{\text{DMI}} + \dots$

➤ The Zeeman interaction, symmetric and asymmetric exchange interactions, dipole interaction, and so on, need to be considered.

I-2. Brillouin scattering for magnonics research: spin waves

$k = 0$


Collective motion of magnetic moments

Landau–Lifshitz–Gilbert (LLG) equation

$$\frac{\partial \mathbf{M}}{\partial t} = -|\gamma|\mu_0 \mathbf{M} \times \mathbf{H}_{\text{eff}} + \frac{\alpha}{M_s} \mathbf{M} \times \frac{\partial \mathbf{M}}{\partial t}$$

$\mathbf{H}_{\text{eff}} = \mathbf{H}_{\text{ext}} + \mathbf{H}_{\text{exchange}} + \mathbf{H}_{\text{dipole}} + \mathbf{H}_{\text{DMI}} + h_{\text{rf}}$

Damping parameter: α

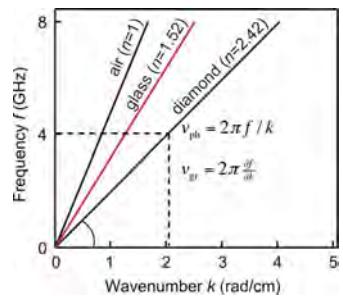
$k = 2\pi/\lambda$

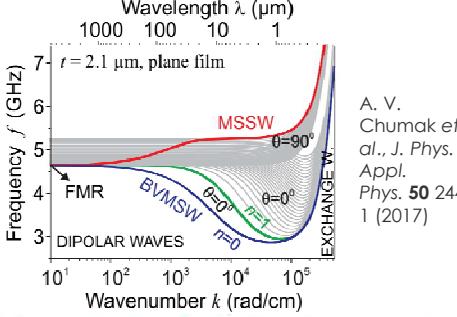
wavelength λ

Spin waves

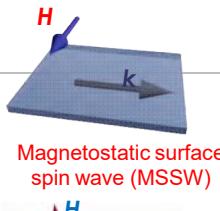
Ferromagnetic resonance (FMR)

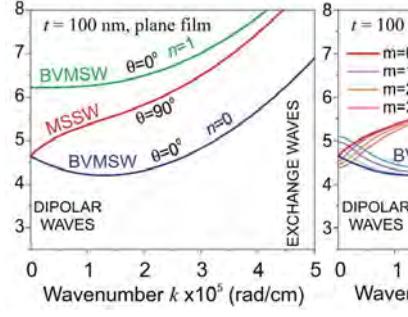
Kittel formula:

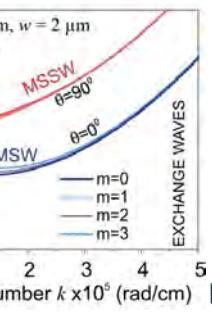

$$\omega_0 = \sqrt{[H_{\text{ext}} + (N_x - N_z)M_s][H_{\text{ext}} + (N_y - N_z)M_s]}$$

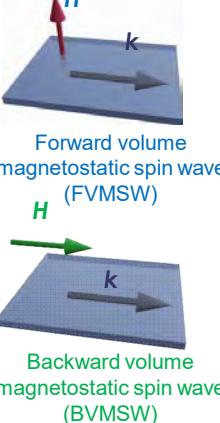


D. D. Stancil et al. Spin waves, Springer (2009);
B.A. Kalinikos and A.N. Slavin, J. Phys C: Solid State Phys, 19 7013 (1986).

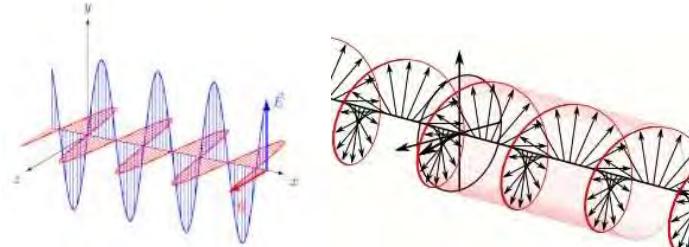

I-2. Brillouin scattering for magnonics research: spin waves




Dispersion of electromagnetic waves, cited from the IEEE Magnetics Society Summer School - Rio de Janeiro, B. Hillebrands



A. V. Chumak et al., J. Phys. D: Appl. Phys. 50 244001 (2017)

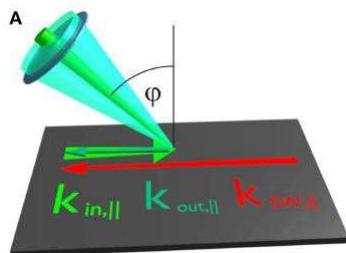


10

I-2. Brillouin scattering for magnonics research: polarization control

BLS uses linearly polarized light;

- The **E** components decide the polarization.
- For linearly polarized light, when **E** components are in x-y plane, then it is called s-polarization.
- For linearly polarized light, when **E** components are in x-z plane, then it is called p-polarization.



https://en.wikipedia.org/wiki/Plane_of_polarization

Photon-magnon scattering involves a 90 deg polarization rotation;

- Laser source is controlled to emit p-polarized light;
- Polarizers and polarization filters applied to only give p-polarized light to the sample, and leave on s-polarized light to the Fabry-Perot interferometer.
- The Fabry-Perot interferometer only detect s-polarized light.

I-2. Brillouin scattering for magnonics research: back-scattered configuration

T. Sebastian et al., Front. Phys., 3 35 (2015).

Wavevector control in back-scattered configuration:

- $k_{SW,||} = 2 \frac{2\pi}{\lambda_L} \cdot \sin \varphi$
- φ : the angle of incidence
- For blue laser with $\lambda_L = 460$ nm
- $k_{SW,max} = 27.3$ rad/ μ m

Magnification = 100x

NA = 0.55

WD = 13.0mm

Focal Length = 2mm

Resolving Power = 0.5 μ m

Depth of Field = 0.9 μ m

MitutoyoM Plan Apo SL 100x
So 33 degree of laser angle

The wavevector can be detected are among the range from -27.3 rad/ μ m to +27.3 rad/ μ m

I-2. Brillouin scattering for magnonics research: micro-focus BLS setup

Laser source:

- linearly polarized light, normally green ($\lambda = 532$ nm) or blue ($\lambda = 473$ nm) light;

Polarization control:

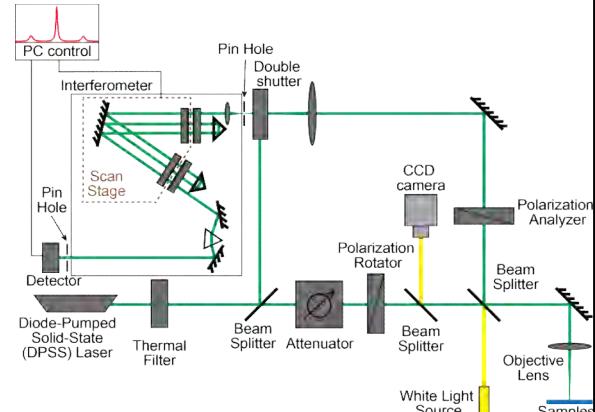
- Polarization control to exclude most of the phonon contribution and select the photon scattered with magnon;

Fabry-Perot interferometer:

- To detect tiny energy difference between the scattered photon and incident photon;

Objective lens:

- To focus on the top surface, also possible for the bottom surface focusing for some materials;


CCD camera and white light source:

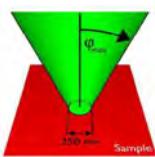
- To image the structure while data collection and select the region to measure;

Piezostages underneath the sample:

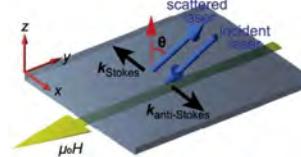
- Spatial scanning function.

Macro BLS has better \mathbf{k}_i control without the objective lens close to the sample.

13


université
PARIS-SACLAY

THALES


I-2. Brillouin scattering for magnonics research: difference between micro- and macro-BLS

From the setup construction:

- Micro-BLS has objective lens with high magnification near the sample;

T. Sebastian et al., Front. Phys., **3** 35 (2015).

Laser diameter
is usually about
40 μm .

M. Heigl et al., Nat. Commun., **12**, 2611 (2021).

- Micro-BLS offers higher spatial resolution.

From the wavevector control:

- In micro-BLS configuration, the laser is focused on the sample with an angle φ_{max} . So the accessible \mathbf{k} is a range from $-2 \frac{2\pi}{\lambda_L} \cdot \sin \varphi_{max}$ to $2 \frac{2\pi}{\lambda_L} \cdot \sin \varphi_{max}$.
- In macro-BLS configuration, the laser is aligned to incident with one angle θ . So the accessible \mathbf{k} is fixed value $-2 \frac{2\pi}{\lambda_L} \cdot \sin \varphi_{max}$ and $2 \frac{2\pi}{\lambda_L} \cdot \sin \varphi_{max}$.

14

université
PARIS-SACLAY

THALES

I-2. Brillouin scattering for magnonics research: magneto-optical effects

Optical properties of magnetized materials are described by the permittivity tensor

$$\varepsilon_{ij} = \varepsilon_{ij}^{(0)} + \left(\frac{\partial \varepsilon_{ij}}{\partial M_k}\right)_{M=0} M_k + \frac{1}{2} \left(\frac{\partial^2 \varepsilon_{ij}}{\partial M_k \partial M_l}\right)_{M=0} M_k M_l + \dots$$

$$\varepsilon_{ij} = \varepsilon_{ij}^{(0)} + K_{ijk} M_k + G_{ijkl} M_k M_l$$

General form of permittivity tensor

$$\varepsilon = \begin{bmatrix} \varepsilon_{xx} & \varepsilon_{xy} & \varepsilon_{xz} \\ \varepsilon_{yx} & \varepsilon_{yy} & \varepsilon_{yz} \\ \varepsilon_{zx} & \varepsilon_{zy} & \varepsilon_{zz} \end{bmatrix}$$

Magneto-optical Optical

In ferromagnets

In paramagnets

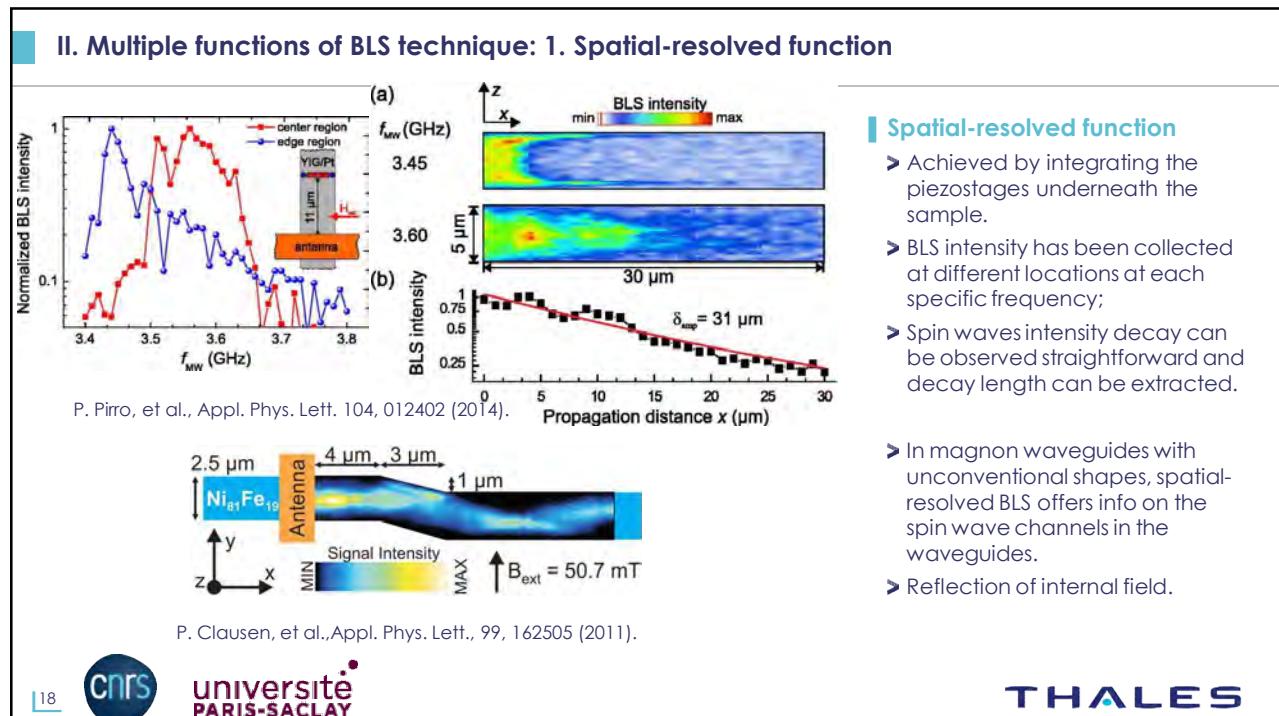
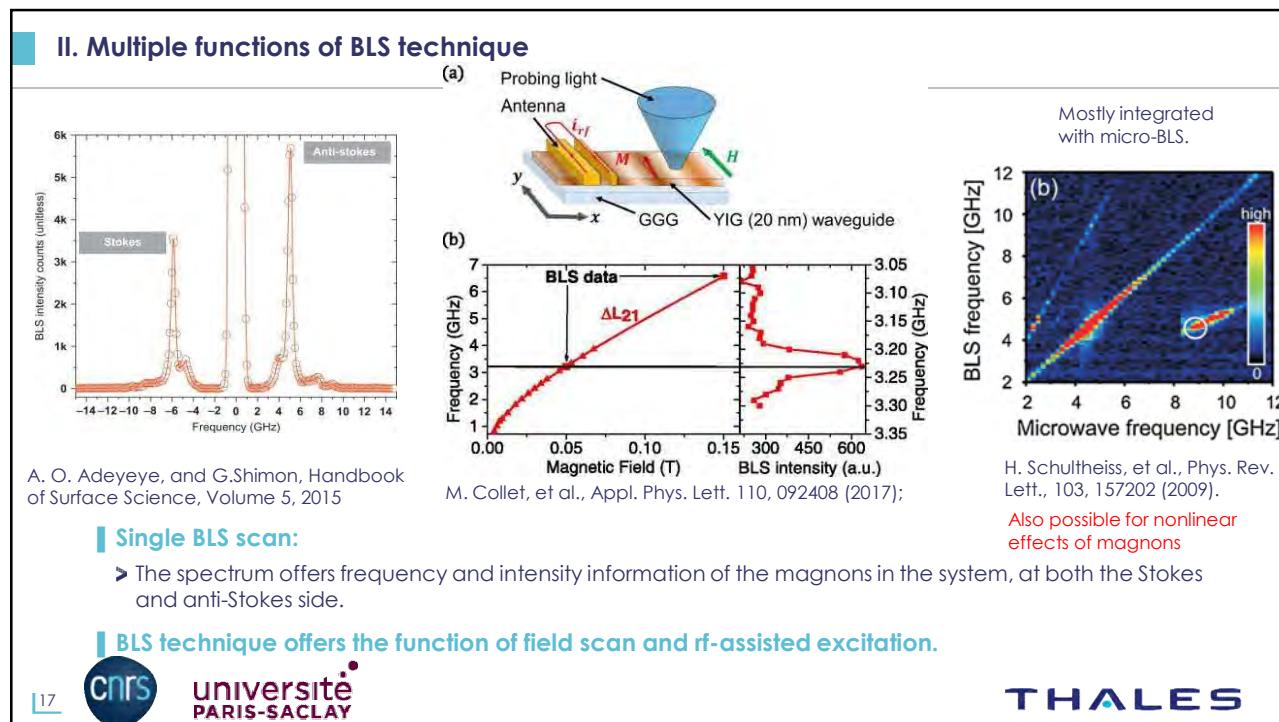
15
CNRS
université PARIS-SACLAY
P. Bruno, Y. Suzuki, and C. Chappert, Phys. Rev. B 53, 9214 (1996).
THALES

Contents

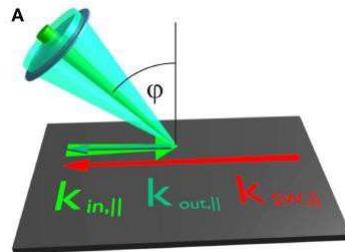
I. The basic principle of Brillouin light scattering (BLS) technique:

- 1. General aspects of Brillouin scattering;
- 2. Brillouin scattering for magnonics research.

II. Multiple functions of BLS technique:

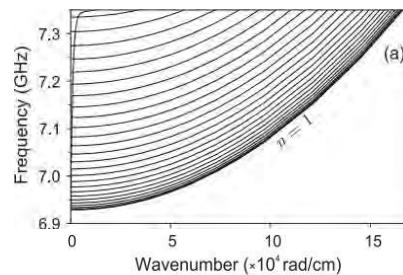
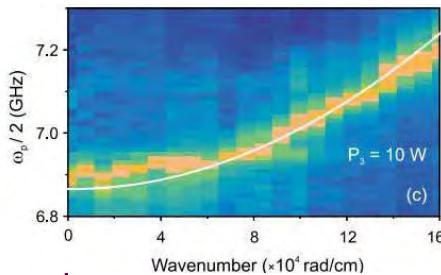


- 1. Spatial-resolved function;
- 2. Wavevector-resolved function;
- 3. Time-resolved function;
- 4. Phase-resolved function.

III. Examples of characterizing magnetic materials hosting non-collinear spin textures using BLS:


- 1. Characterizing basic magnetic properties of materials;
- 2. Investigation of Bose-Einstein condensation (BEC) of magnons;
- 3. Investigation of magnon band structure with BLS;
- 4. Investigation of local phase diagrams of chiral magnets with BLS.

Lab demonstration

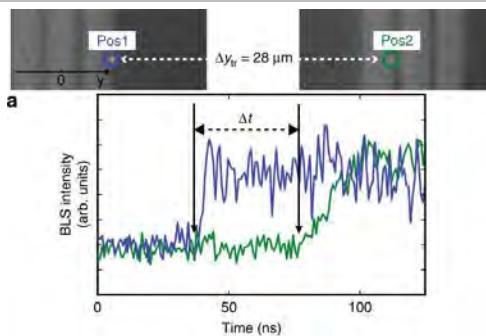
16
CNRS
université PARIS-SACLAY
THALES



II. Multiple functions of BLS technique: 2. Wavevector-resolved function

T. Sebastian et al., Front. Phys., 3 35 (2015).

Wavevector control in back-scattered configuration:

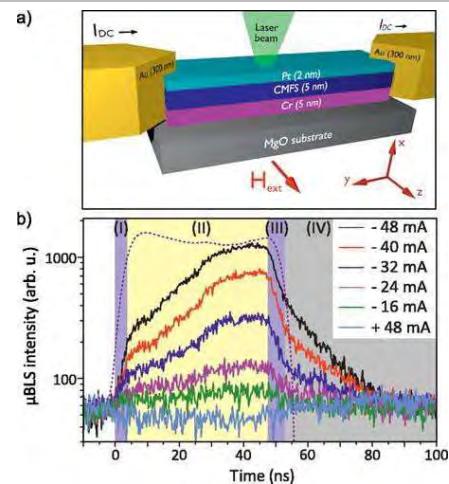
- $k_{SW,||} = 2 \frac{2\pi}{\lambda_L} \cdot \sin \varphi$
- φ : the angle of incidence
- By varying the incident angle φ , the in-plane spin wavevector $k_{SW,||}$ varies.
- Convenient tool to explore magnon band structure and relevant physics.


A. A. Serga, et al., Phys. Rev. B, 86, 134403 (2012).

THALES

université
PARIS-SACLAY

II. Multiple functions of BLS technique: 3. Time-resolved function


P. Che, K. Baumgaertl, et al., Nat. Commun., 11, 1445 (2020).

To measure the group velocity of magnons:

- Time-domain BLS signal collected at different locations;
- $v_g = \frac{\Delta y_{tr}}{\Delta t}$

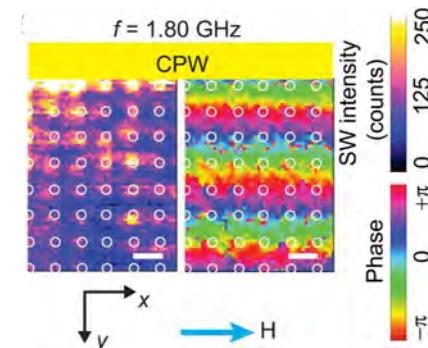
Time-dependent phenomenon.

- Spin current generated via spin-Hall-effect and the spin-transfer-torque effect.

T. Meyer, et al., Appl. Phys. Lett. 112, 022401 (2018).

université
PARIS-SACLAY

THALES


II. Multiple functions of BLS technique: 4. Phase-resolved function

Phase-resolved BLS configuration:

- Electro-optical modulator (EOM) driven by the same microwave signal used to excite the spin wave;
- Interference between **inelastically scattered light** created in the process of propagation of the probing laser beam through the sample with **reference scattered light provided by the magneto-optic modulation**;
- Without phase correlation, the intensities of the sample beam E_s^2 and the reference beam E_r^2 combine to $E_s^2 + E_r^2$;
- With interference conditions, the sample beam and the reference beam combine to $E_s^2 + 2E_sE_r\cos\varphi + E_r^2$ with an additional phase-term.

Phase information of spin waves:

- Wavelength can be extracted;
- Spin wave channels are clearly visualized.

S. Watanabe, et al., Sci. Adv., 7, eabg3771 (2021).

121

université
PARIS-SACLAY

THALES

Contents

I. The basic principle of Brillouin light scattering (BLS) technique:

- 1. General aspects of Brillouin scattering;
- 2. Brillouin scattering for magnonics research.

II. Multiple functions of BLS technique:

- 1. Spatial-resolved function;
- 2. Wavevector-resolved function;
- 3. Time-resolved function;
- 4. Phase-resolved function.

III. Examples of characterizing magnetic materials hosting non-collinear spin textures using BLS:

- 1. Characterizing basic magnetic properties of materials;
- 2. Investigation of Bose–Einstein condensation (BEC) of magnons;
- 3. Investigation of magnon band structure with BLS;
- 4. Investigation of local phase diagrams of chiral magnets with BLS.

Lab demonstration

122

université
PARIS-SACLAY

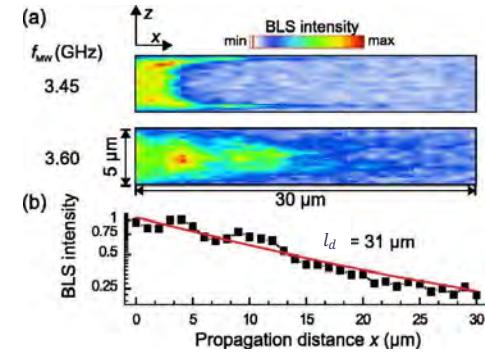
THALES

III. Examples of characterizing magnetic materials hosting non-collinear spin textures using BLS: 1. Characterizing basic magnetic properties of materials

Landau–Lifshitz–Gilbert (LLG) equation

$$\frac{\partial \mathbf{M}}{\partial t} = -|\gamma|\mu_0 \mathbf{M} \times \mathbf{H}_{\text{eff}} + \frac{\alpha}{M_s} \mathbf{M} \times \frac{\partial \mathbf{M}}{\partial t}$$

Kittel formula:

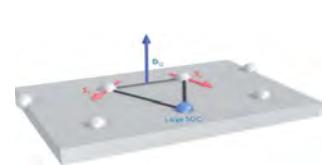

$$\omega_0 = \sqrt{[H_{\text{ext}} + (N_x - N_z)M_s][H_{\text{ext}} + (N_y - N_z)M_s]}$$

E.g. mode dispersion relation:

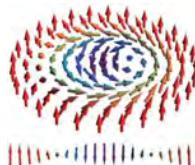
$$\omega = \sqrt{(H + M_s T4 + Jk^2)(H + M_s T4 + Jk^2) - \frac{e^{-4} |k| l_d M_s^2}{16} (1 + 2e^2 |k| l_d)}$$

Basic magnetic properties of materials:

- Saturation magnetization, in the smaller \mathbf{k} regime;
- Exchange stiffness, in the higher \mathbf{k} regime;
- Decay length and damping parameter;
- Dzyaloshinskii-Moriya interaction (DMI) strength.


P. Pirro, et al., Appl. Phys. Lett. 104, 012402 (2014).

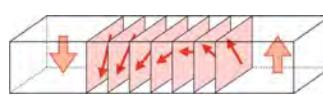
$$\text{Decay length } l_d = \frac{2\pi\alpha f}{\kappa} \text{ Relaxation time } \tau = \frac{1}{\kappa} \text{ or } \frac{2\pi\alpha f}{\kappa}$$

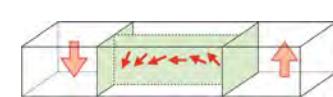
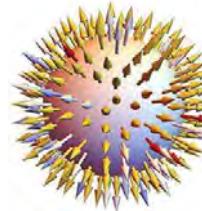

III-1. Characterizing basic magnetic properties of materials: DMI

DMI:

- Symmetric exchange interaction: $E_{\text{ex}} = -2J_{ij}\mathbf{S}_i \cdot \mathbf{S}_j$;
- Dzyaloshinskii-Moriya interaction is an asymmetric exchange interaction: $E_{\text{DMI}} = D_{ij}\mathbf{S}_i \times \mathbf{S}_j$.

Bulk DMI in non-centrosymmetry chiral magnet


Bloch type skyrmion



Interfacial DMI in broken inversion symmetry multilayers of normal metal/ferromagnet

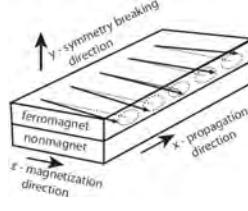
Néel type skyrmion

Bloch type domain wall

Néel type domain wall

A. Fert et al., Nat. Rev. Materials., 2 17031 (2017); I. Kerezmarki et al., Nat. Mater., 14 1116 (2015); S. Seki and M. Mochizuki, Skyrmions in Magnetic Materials, Springer (2016); A. A. Kovalev and S. Sandhoefer, Front. Phys., 27 (2018).

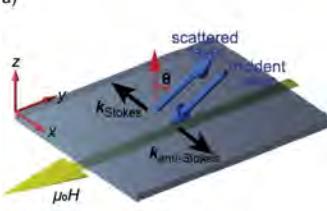
III-1. Characterizing basic magnetic properties of materials: DMI

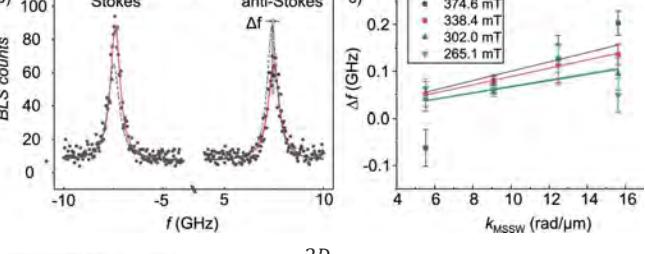

DMI type	Bulk DMI	Interfacial DMI
Asymmetric dispersion relations	BV mode, $\vec{k} \parallel \vec{M}$	DE mode, $\vec{k} \perp \vec{M}$

Small-k regime:

$$\frac{\omega}{\gamma\mu_0} = \sqrt{(H + M_s/4 + Jk^2)(H + 3M_s/4 + Jk^2)} - \frac{e^{-4|k|d}M_s^2}{16}(1 + 2e^{2|k|d}) + pD^*k$$

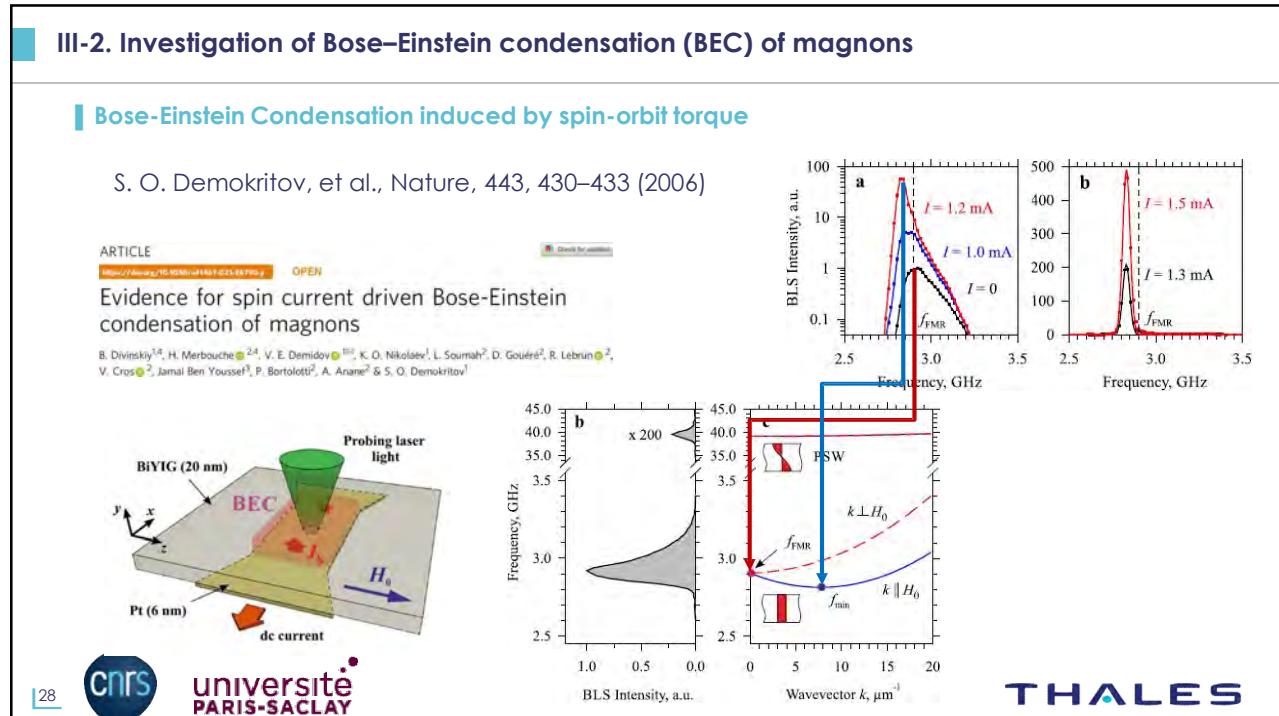
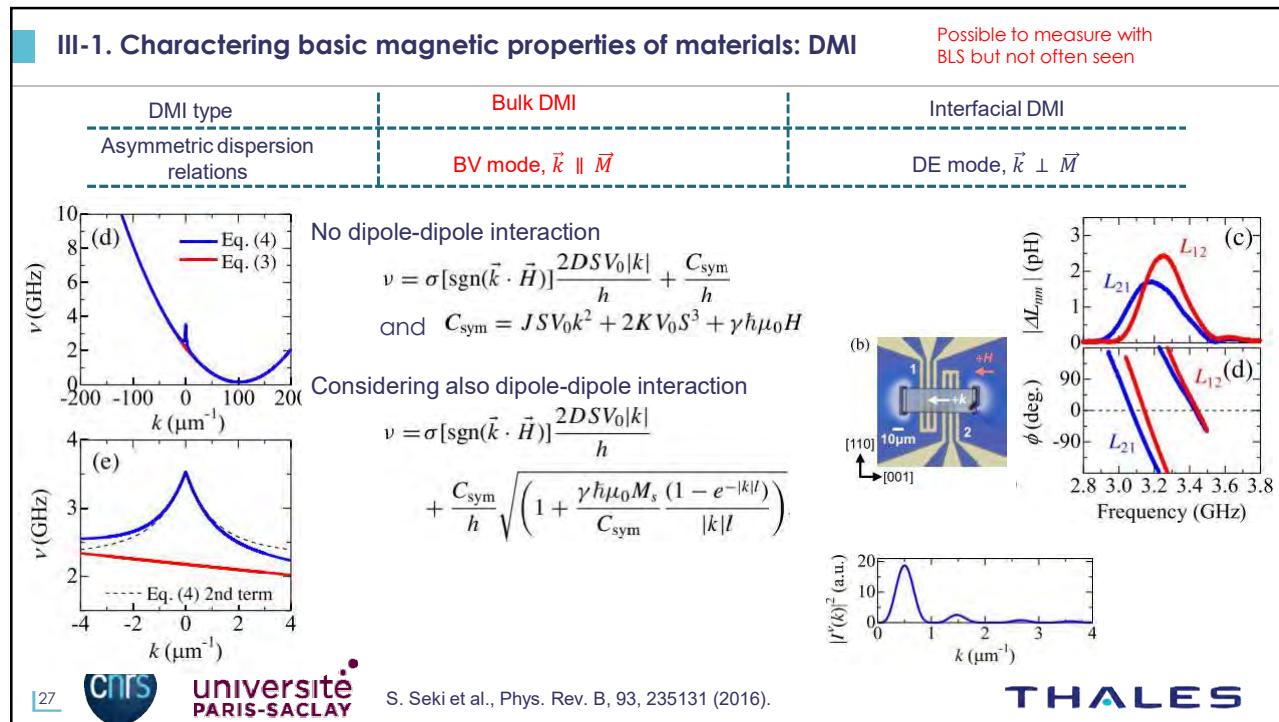
Large-k regime:

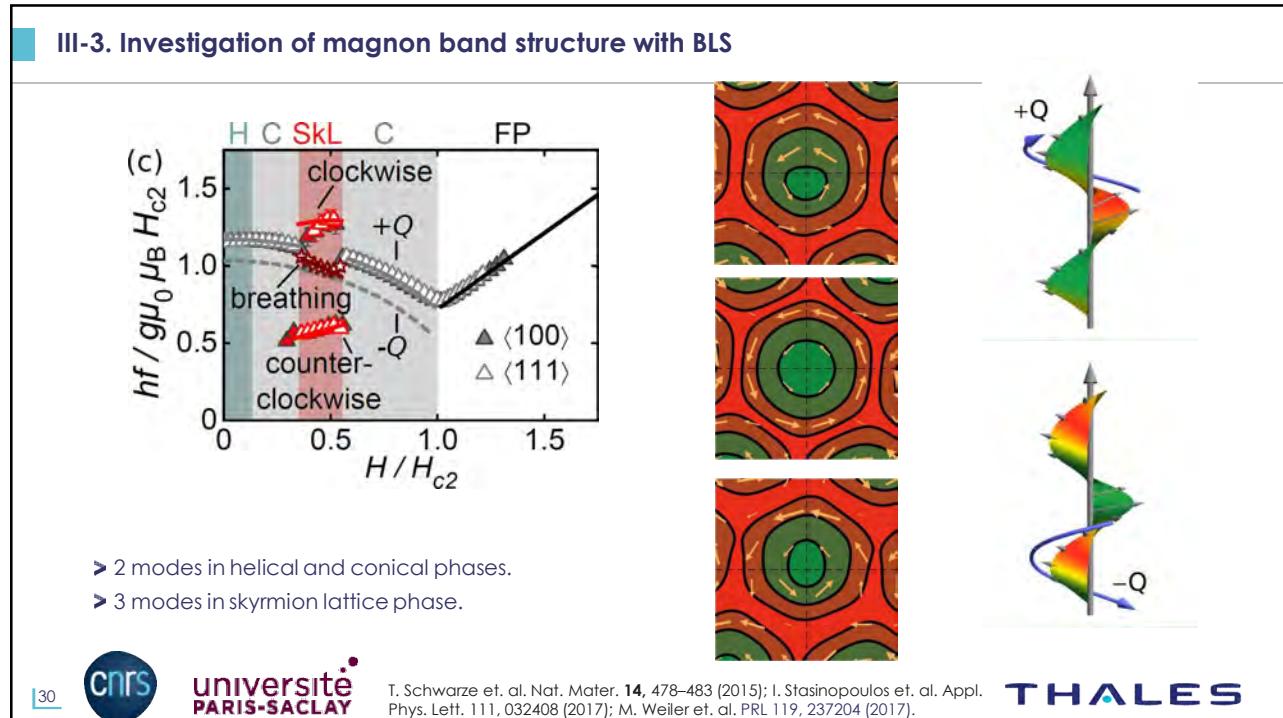
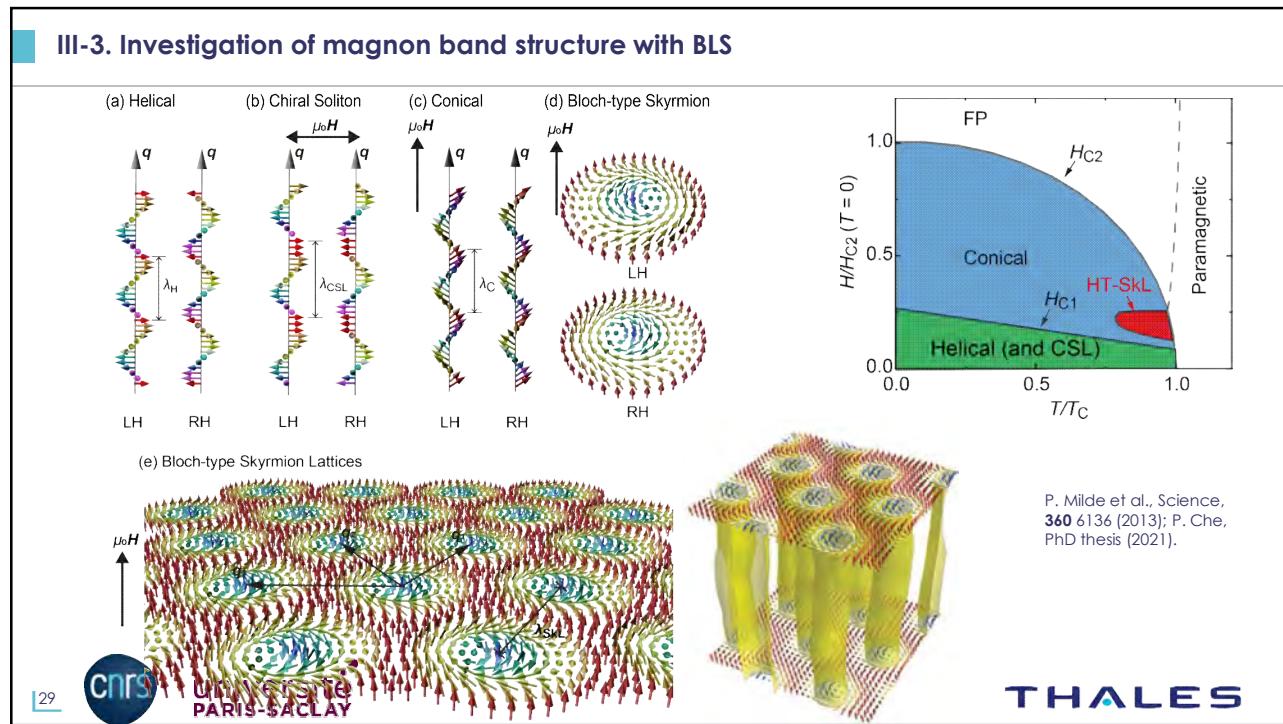

$$\frac{\omega}{\gamma\mu_0} = \sqrt{(H + Jk^2)(H + M_s + Jk^2)} + pD^*k \quad D^* = \frac{2D}{\mu_0 M_s}$$

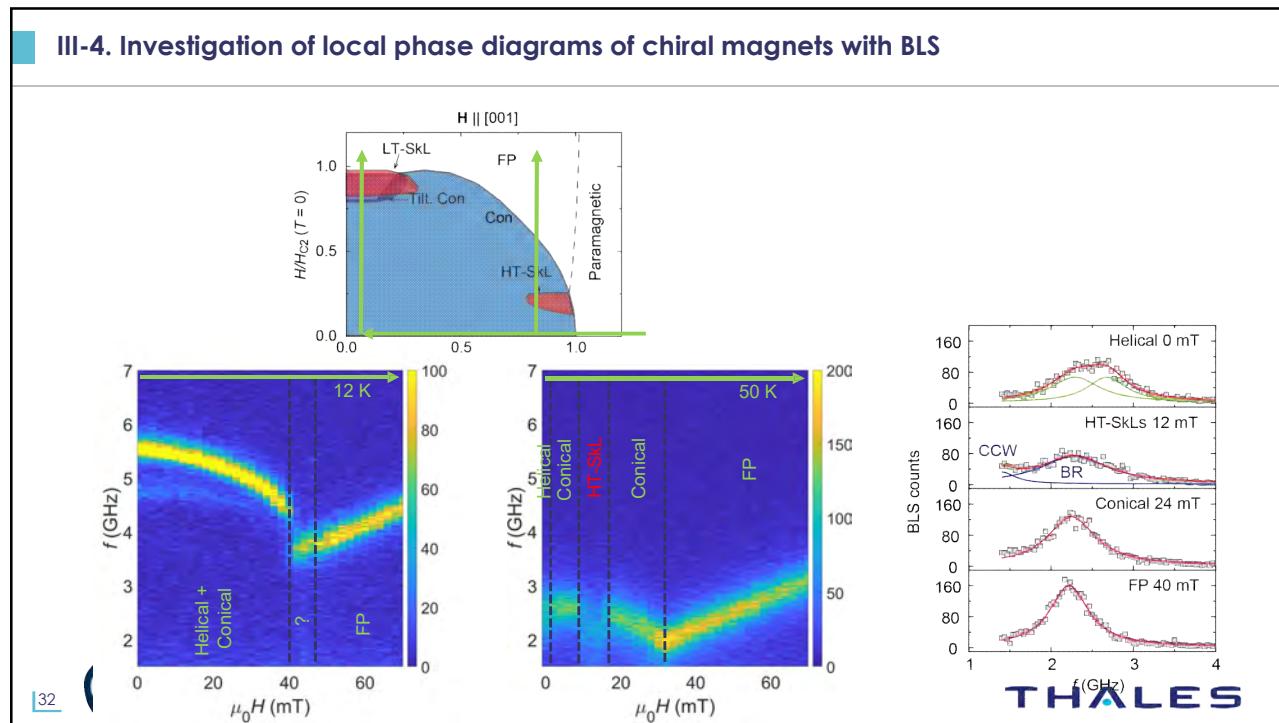
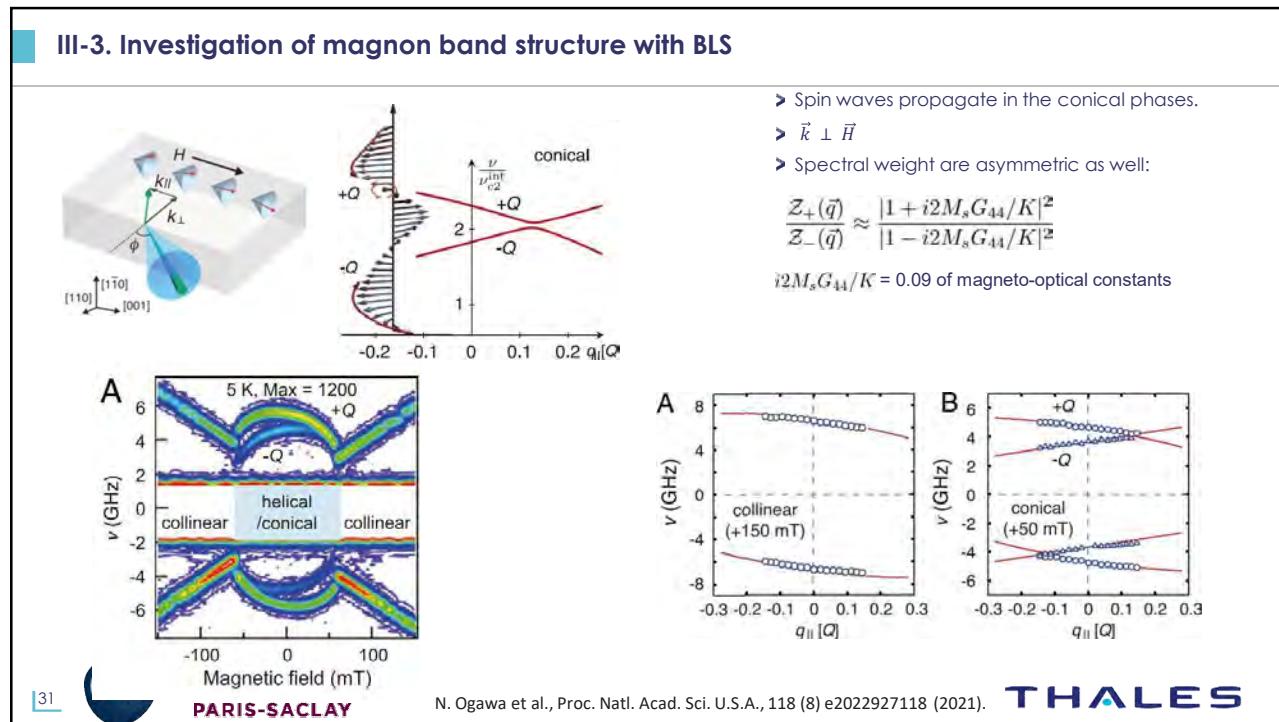

J-H. Moon et al., Phys. Rev. B, 88, 184404 (2013); K. Di et al., Appl. Phys. Lett. 106, 052403 (2015).

III-1. Characterizing basic magnetic properties of materials: DMI

a)



b)



c)



$$\frac{\omega}{\gamma\mu_0} = \sqrt{(H + Jk^2)(H + M_s + Jk^2)} + pD^*k \quad D^* = \frac{2D}{\mu_0 M_s}$$

Question: The average fitting slot is $0.0105 \text{ GHz}/\frac{\text{rad}}{\text{um}}$, $M_s=230 \text{ kA/m}$, please estimate the DMI strength.

Magneto-optical Kerr effect (MOKE) and X-ray Circular Dichroism (XMCD) - microscopic mechanism and experimental measurement

Instructor: Dr. Phoebe Tengdin

Slide credit: **Jaroslav Hamrle**

(jaroslav.hamrle@vsb.cz)

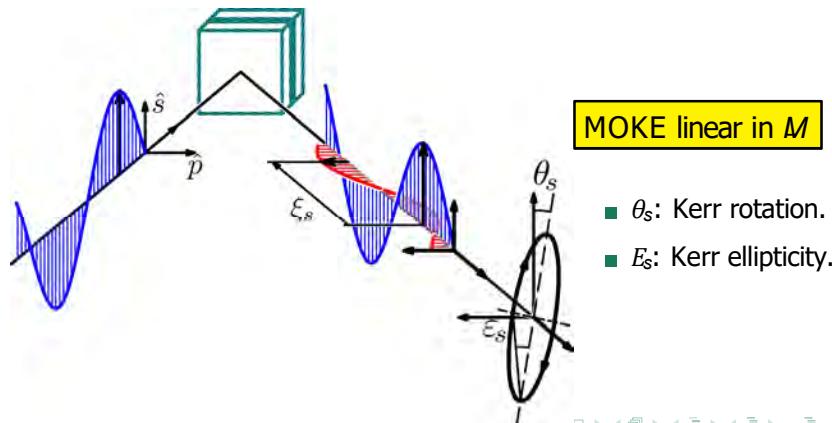
November 18, 2022

Magneto-optical Kerr effect:

- Change of optical properties (polarization state, reflectivity) by presence/change of magnetization of the sample.

One can separate usage of magneto-optical (MO) effects to:

- MO as a metrology tool to study magnetism:
 - MO magnetometry (study of magnetization reversal).
 - MO microscopy (study of domain wall and its propagation).
 - Magnetization dynamic studies (precession etc.)
 - MO as a tool for ultrafast magnetization processes.
- MO spectroscopy to study optical properties of the MO effect:
 - Magnetism is understood as a perturbation, reducing symmetry of the solids and hence introducing new optical features.
 - Study of spin-orbit interaction.
 - Interaction between light and magnetism – a very fundamental interaction.


Magneto-optical Kerr effect (MOKE)

└ Magneto-optical effect

└ Examples of magneto-optical effects

MO effect I: Magneto-optical Kerr effect (MOKE):

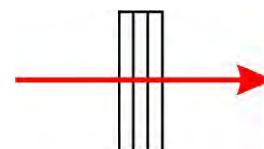
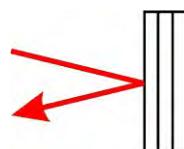
- For example: incident s-polarized wave.
- Magnetized sample
⇒ hence: also p-polarized wave appears on the reflection.

Magneto-optical Kerr effect (MOKE)

└ Magneto-optical effect

└ Examples of magneto-optical effects

MO effect I: Kerr and Faraday MO effect:

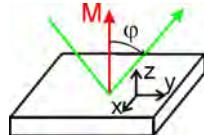


Due to historical reasons, there are different names for MO effects measured in reflection and transmission.

Kerr effect:

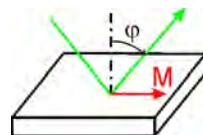
- measured in reflection.
- discovered 1876.

Faraday effect:

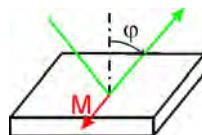
- measured in transmission.
- discovered 1845.


Magneto-optical Kerr effect (MOKE)

└ Magneto-optical effect


└ Examples of magneto-optical effects

MOKE configurations and permittivity tensor:


Polar MOKE
 $M \perp$ sample surface

Longitudinal MOKE
 $M \parallel$ plane of incidence

Transversal MOKE
 $M \perp$ plane of incidence

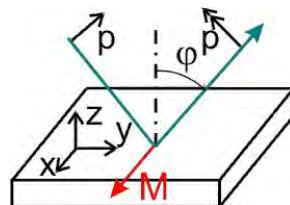
Polarization induced by magnetization: $\Delta P_M = \epsilon_1(M \times E)$

$$\begin{matrix} \square & \epsilon_0 & -\epsilon_1 m_z & 0 & \square & \square & \epsilon_0 & 0 & \epsilon_1 m_y & \square & \square & \epsilon_0 & 0 & -\epsilon_1 m_x & \square \\ \square & \epsilon_1 m_z & \epsilon_0 & 0 & \square & \square & 0 & \epsilon_0 & 0 & \square & \square & 0 & \epsilon_0 & -\epsilon_1 m_x & \square \\ 0 & 0 & \epsilon_0 & & -\epsilon_1 m_y & 0 & \epsilon_0 & & & 0 & \epsilon_1 m_x & \epsilon_0 & & & \end{matrix}$$

$\Phi_{s/p}(m_z)$

$\Phi_{s/p}(m_y)$

$\Delta r_{pp}(m_x)$


Magneto-optical Kerr effect (MOKE)

└ Magneto-optical effect

└ Examples of magneto-optical effects

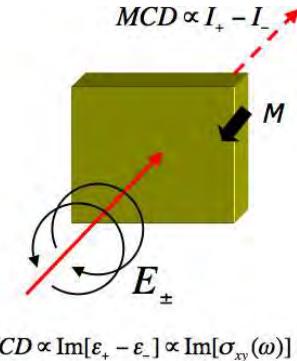
MO effect II: transversal MOKE:

- Incident p-polarized wave.
- Magnetization in-plane and perpendicular to the incident plane (so-called transversal magnetization direction).
- Change of the reflected p-polarized intensity due to magnetization in the sample (in this particular case, no change in polarization of the reflected light appears).

Magneto-optical Kerr effect (MOKE)

└ Magneto-optical effect

└ Examples of magneto-optical effects


MO effect III: Magnetic dichroism and birefringence:

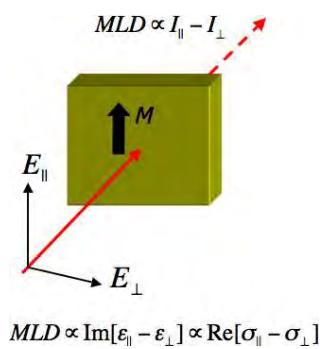
Dichroism: different damping of both light's eigen-modes.

Birefringence: different propagation speed of both light's eigen-modes.

Magnetic circular dichroism (MCD):

- Different absorption for circularly left and right polarized light.
- MCD linear in M .
- MOKE and MCD has the same microscopic origin, they just manifest in different ways.

$$MCD \propto \text{Im}[\epsilon_+ - \epsilon_-] \propto \text{Im}[\sigma_{xy}(\omega)]$$


Magneto-optical Kerr effect (MOKE)

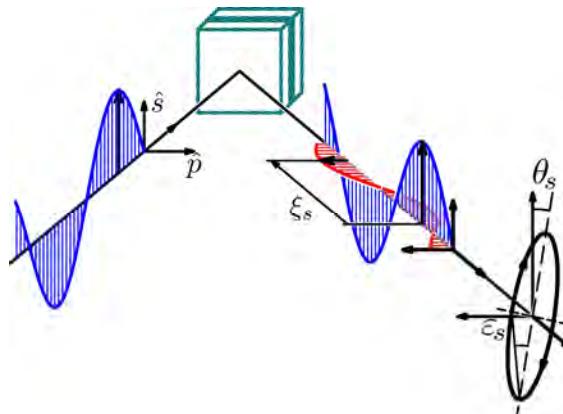
└ Magneto-optical effect

└ Examples of magneto-optical effects

MO effect IV: Voigt effect:

- Discovered 1899.
- Different absorption or phase shift for linear polarization parallel and perpendicular with the magnetization.
- Quadratic in M ($\sim M^2$).
- Also called Cotton-Mouton effect or linear magnetic dichroism/birefringence (LMD/LMB)
- The same microscopic origin as quadratic MOKE (QMOKE) (more precisely, Voigt effect is simplest case of QMOKE).

$$MLD \propto \text{Im}[\epsilon_|| - \epsilon_⊥] \propto \text{Re}[\sigma_{||} - \sigma_⊥]$$


Magneto-optical Kerr effect (MOKE)

└ Magneto-optical effect

└ Examples of magneto-optical effects

Classification of the MO effects:

- Even / odd effect in magnetization.
- Measured in transmission / reflection.
- Detected change of intensity / polarization.
- Probing light is linearly / circularly polarized.

Magneto-optical Kerr effect (MOKE)

└ Magneto-optical effect

└ Examples of magneto-optical effects

Family of magneto-optical effects:

Linear pol.	Detected: Polariz.	Detected: Intensity
Linear in M	MOKE, (Kerr and Faraday effect) [Hall effect]	Transversal-MOKE
Quadratic in M	QMOKE, Voigt effect, Linear Magnetic Birefringence (LMB)	Linear Magnetic Dichroism (LMD) [AMR]
Circular pol.	Detected: Polariz.	Detected: Intensity
Linear in M	Mag. Circular Birefringence (MCB)	Magnetic Circular Dichroism (MCD)
Quadratic in M	?	quadratic-MCD (?)

[...] denotes nomenclature in research of conductivity.

Magneto-optical Kerr effect (MOKE)

- └ Magneto-optical effect
- └ Origin of magneto-optical effects

Origin of MO effect (microscopic):

Electronic structure of the FM material
[microscopic description]

↓

Permittivity tensor of each layer
[phenomenological description]

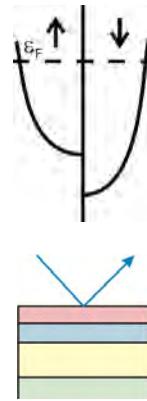
↓

$$\varepsilon = \begin{bmatrix} \varepsilon_{xx} & \varepsilon_{xy} & \varepsilon_{xz} \\ \varepsilon_{yx} & \varepsilon_{yy} & \varepsilon_{yz} \\ \varepsilon_{zx} & \varepsilon_{zy} & \varepsilon_{zz} \end{bmatrix}$$

↓

Reflectivity matrix of whole sample
[maximal accessible optical information]

↓


$$R = \begin{bmatrix} r_{ss} & r_{sp} \\ r_{ps} & r_{pp} \end{bmatrix}$$

↓

Measured Kerr effect: $\Phi_s = \frac{r_{ps}}{r_{ss}}$

↓

Signal measured by MO setup

Magneto-optical Kerr effect (MOKE)

- └ Magneto-optical effect
- └ Origin of magneto-optical effects

MO effects and permittivity tensors

[Note: tensors on this slide are only illustrative.]

⇒ Linear MOKE: PMOKE, LMOKE, TMOKE, MCD, MCB, [Hall]

$$\begin{bmatrix} \varepsilon_0 & -\varepsilon_1 m_z & \varepsilon_1 m_y \\ \varepsilon_1 m_z & \varepsilon_0 & -\varepsilon_1 m_x \\ -\varepsilon_1 m_y & \varepsilon_1 m_x & \varepsilon_0 \end{bmatrix} \quad \text{MO signal} \sim \varepsilon_1(m_i)$$

⇒ Quadratic MOKE:

$$\begin{bmatrix} \varepsilon_0 & \varepsilon_1(m_i m_j) & 0 \\ \varepsilon_1(m_i m_j) & \varepsilon_0 & 0 \\ 0 & 0 & \varepsilon_0 \end{bmatrix} \quad \text{MO signal} \sim \varepsilon_1(m_i m_j)$$

⇒ Voigt effect: MLD, MLD, [AMR]

$$\begin{bmatrix} \varepsilon_{xx}(m_i m_j) & 0 & 0 \\ 0 & \varepsilon_{yy}(m_i m_j) & 0 \\ 0 & 0 & \varepsilon_{zz}(m_i m_j) \end{bmatrix} \quad \text{MO signal} \sim \frac{\varepsilon_{zz}(m_i m_j) - \varepsilon_{yy}(m_i m_j)}{\varepsilon_{zz}(m_i m_j) + \varepsilon_{yy}(m_i m_j)}$$

Magneto-optical Kerr effect (MOKE)

└ Magneto-optical effect

└ Origin of magneto-optical effects

Photon absorption: electric-dipole approximation:

- The largest contribution to the absorption is given by so-called electric-dipole approximation (valid for $\lambda \gg a$), providing so-called electric-dipole transitions.
- Hence, whole vast energy range can be described by so-called Kubo formula, determining conductivity (absorption) for a given photon energy (shown later).

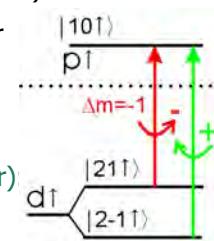
Magneto-optical Kerr effect (MOKE)

└ Magneto-optical effect

└ Origin of magneto-optical effects

Selection rules of electric-dipole transitions:

Electric dipole transition is allowed when following conditions are fulfilled:


Energy: $E_f - E_i = n\omega$ (absorbed photon energy is difference between energies of the final and initial electron states)

Momentum: $n\omega/c \approx 0$ (photon has negligible momentum compared to one of the electron. I.e. the momentum of the electron is kept between initial and final state (vertical transitions)).

Electron spin : $\Delta s = 0$ (as photon has no spin, spin of electron is preserved for electric dipole transitions)

Orbital momentum: $\Delta l = \pm 1$ (photon has angular momentum $1n$). Therefore only $s \leftrightarrow p$, $p \leftrightarrow d$ etc. transitions are allowed.

Orbital momentum along z-axis (magnetic number): $\Delta m = \pm 1$ (determines if photon is circularly right or left polarized).

Magneto-optical Kerr effect (MOKE)

└ Magneto-optical effect

└ Origin of magneto-optical effects

Ab-initio calculation of permittivity tensor

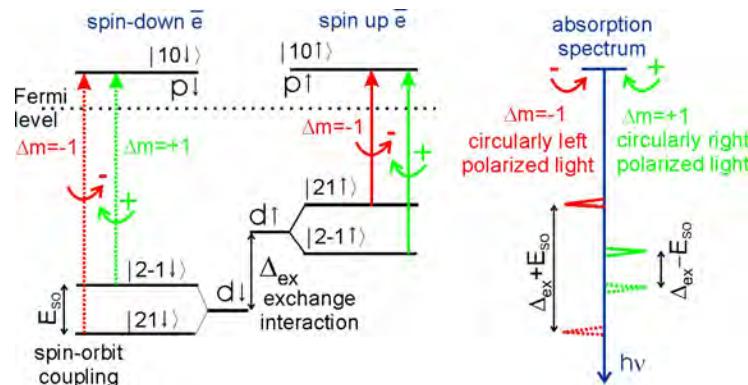
Kubo formula: conductivity determination.

$$S[\varepsilon_{xx}] \sim \sum_{i,f} (f(E_i) - f(E_f)) \times [|(i|p_+|f)|^2 + |(i|p_-|f)|^2] \times \delta(E_f - E_i - n\omega)$$

$$!R[\varepsilon_{xy}] \sim \sum_{i,f} (f(E_i) - f(E_f)) \times [|(i|p_+|f)|^2 - |(i|p_-|f)|^2] \times \delta(E_f - E_i - n\omega)$$

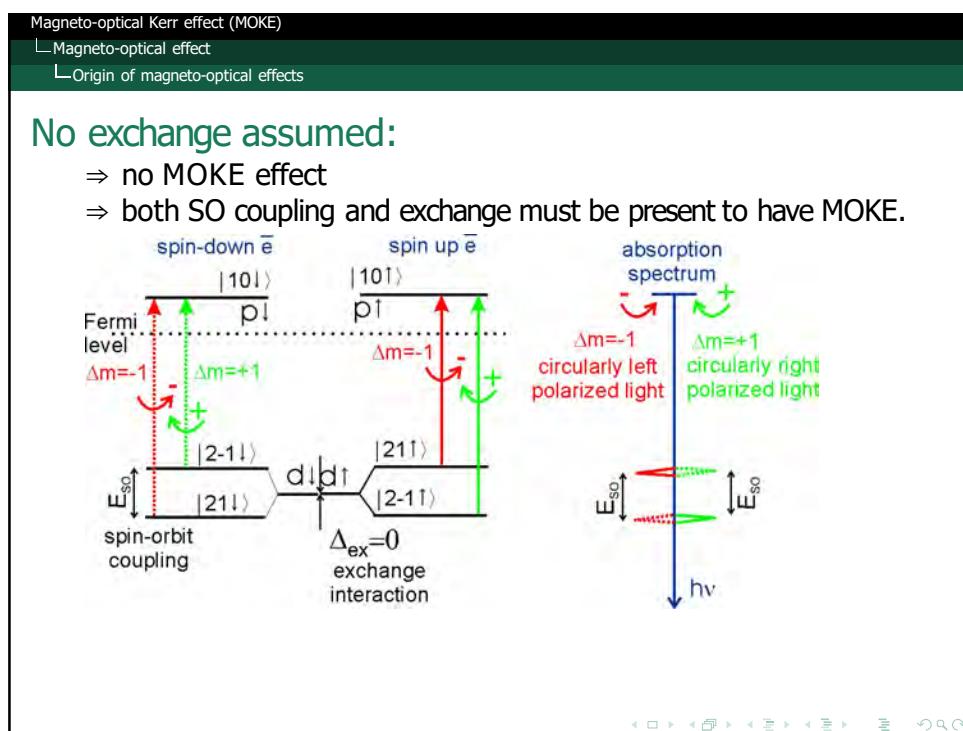
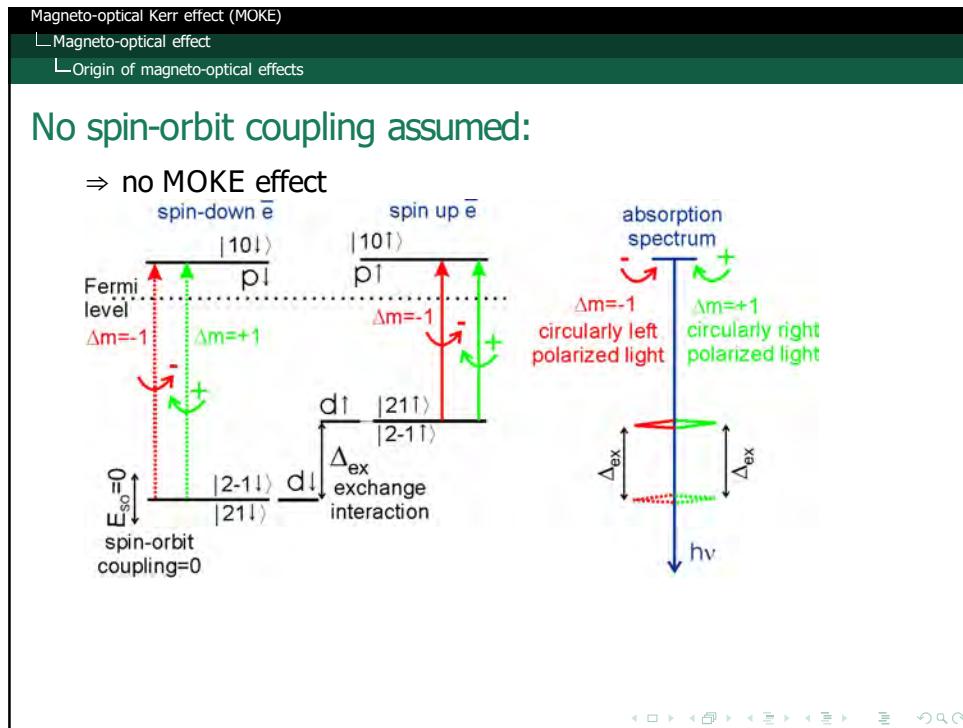
where

- $|i\rangle, |f\rangle$: initial and final states, respectively.
- $p_{\pm} = p_x \pm ip_y, p_x = in\partial/\partial x$, momentum operator
- terms in the Kubo formula means:
 - summation over all initial and final states, $|i\rangle$ and $|f\rangle$.
 - $f(E_f), f(E_i)$: electron occupancy of initial and final states.
 - $|(i|p_{\pm}|f)|^2$: probability of the photon to be absorbed between $|i\rangle$ and $|f\rangle$ states for circularly left/right polarized light (non-zero only when electric-dipole selection rules are fulfilled).
 - $\delta(E_f - E_i - n\omega)$ assures energy conservation.



Magneto-optical Kerr effect (MOKE)

└ Magneto-optical effect



└ Origin of magneto-optical effects

Magneto-optical spectroscopy microscopic picture

Simplified electronic structure for one point of the k -space.

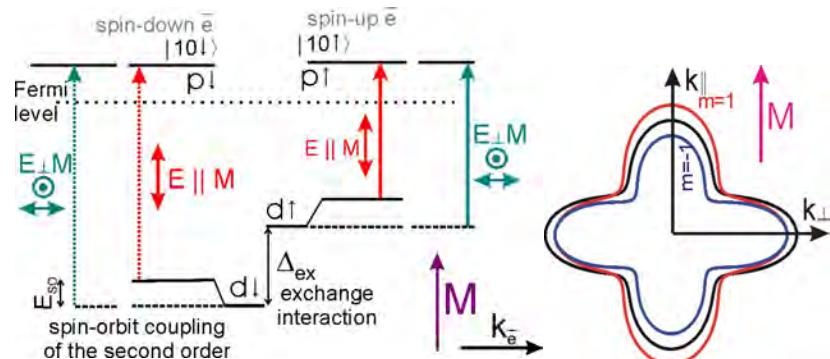
Magneto-optical Kerr effect (MOKE)

└ Magneto-optical effect

└ Origin of magneto-optical effects

Quadratic Magneto-optical Kerr effect (QMOKE):

QMOKE arises from different absorptions for $E \perp M$ and $E \parallel M$.



Magneto-optical Kerr effect (MOKE)

└ Magneto-optical effect

└ Origin of magneto-optical effects

Quadratic Magneto-optical Kerr effect (QMOKE):

QMOKE arises from different absorptions for $E \perp M$ and $E \parallel M$.

⇒ arises from different electronic structure in $-k_{\text{e}} \perp M$ and $-k_{\text{e}} \parallel M$.

Magneto-optical Kerr effect (MOKE)

└ Magneto-optical effect

└ Origin of magneto-optical effects

Phenomenological description of MOKE

Inputs are permittivity tensors and layer thicknesses

Phenomenological description based on 4×4 matrix formalism.
(light propagation through layer & continuity of lateral E and H field)

calculated reflectivity matrix

calculated MO Kerr effect

Magneto-optical Kerr effect (MOKE)

└ Magneto-optical effect

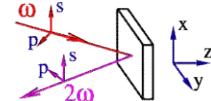
└ Use of magneto-optical effects

Visible MOKE advantages and disadvantages:

- spatial resolution limited by wavelength limit ($\sim 300\text{nm}$ for visible light) → but sub-wavelength resolution demonstrated.
- investigation 'on distance', light can be transported nearby sample by a fibre.
- no need of vacuum or special sample preparation.
- depth resolution about 30nm.
- measurements do not influence sample magnetization.
- high time resolution (down to 20 fs).
- depth selectivity.
- vectorial resolution (possible to determine all magnetization components).
- robust, cheap technique.

BUT:

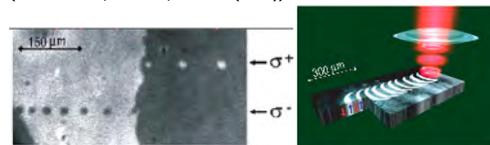
- spatial resolution limited by wavelength limit.
- easy to overcome Kerr signal by spurious noise (S/N ratio problem).
- not direct information about the electronic structure or magnetic moments etc.

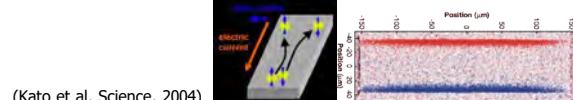

Magneto-optical Kerr effect (MOKE)

└ Magneto-optical effect

└ Use of magneto-optical effects

Extensions of MOKE:


- XMCD, XMCD for high photon energy.

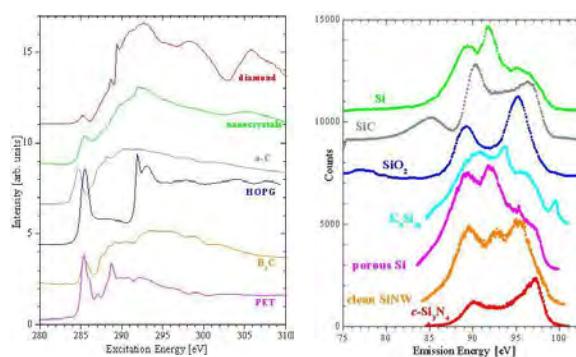

- Non-linear magneto-optics
⇒ MO second harmonic generation.

- Inverse Faraday effect (ultrafast optical switching).

(Stanciu et al, PRL 99, 047601 (2007))

- Observation of spin accumulation in GaAs (spin Hall effect).

(Kato et al, Science, 2004)

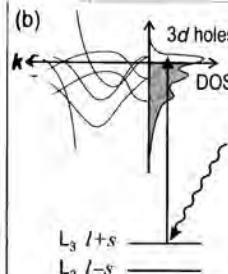

Magneto-optical Kerr effect (MOKE)

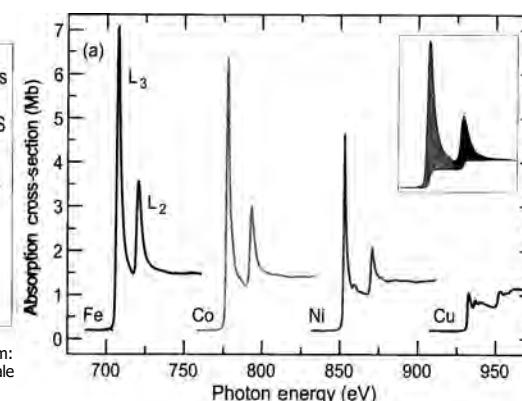
└ Magneto-optical effect

└ Use of magneto-optical effects

X-ray absorption spectroscopy (XAS):

XAS is extremely sensitive to the chemical state each element, as each element have its own characteristic binding energies. XAS measurements can distinguish the form in which the element crystallizes (for example one can distinguish diamond and graphite, which both entirely consist of C), and can also distinguish between different sites of the same element.


<http://beamteam.usask.ca/>



Magneto-optical Kerr effect (MOKE)

- └ Magneto-optical effect
- └ Use of magneto-optical effects

XAS on Fe:

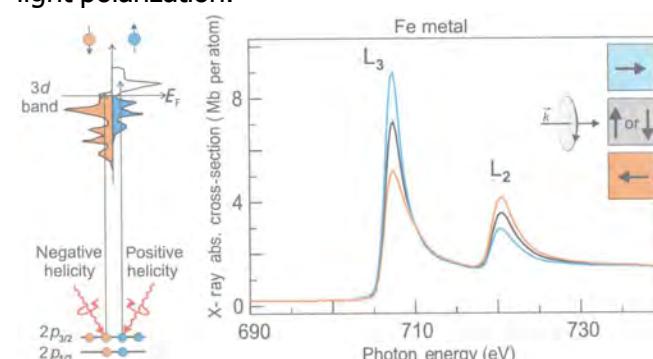
(b)

(a)

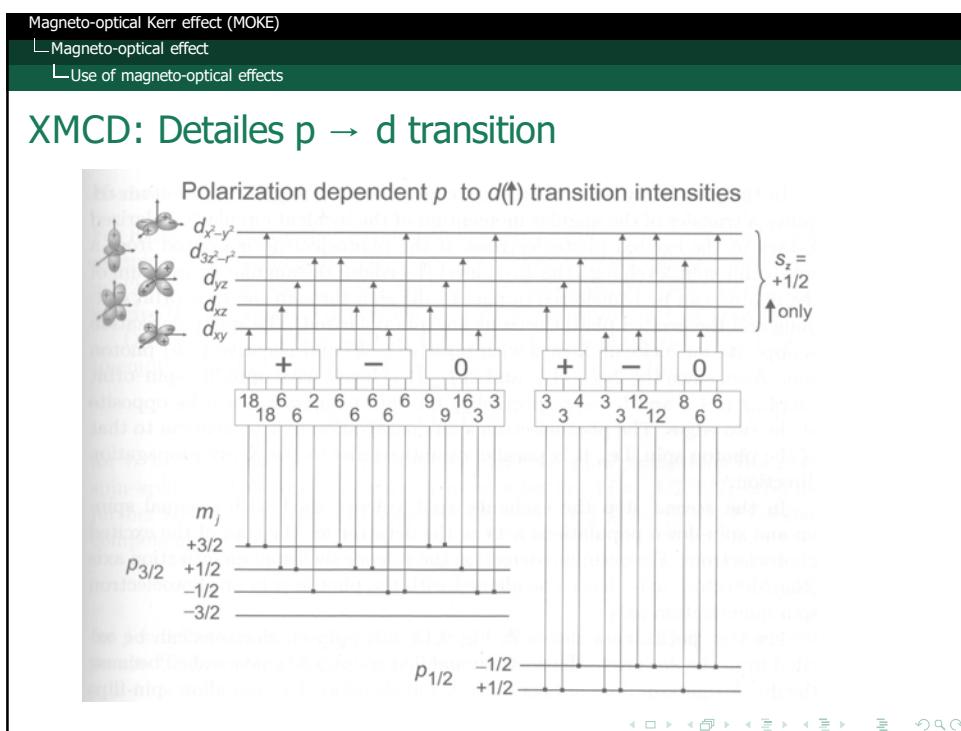
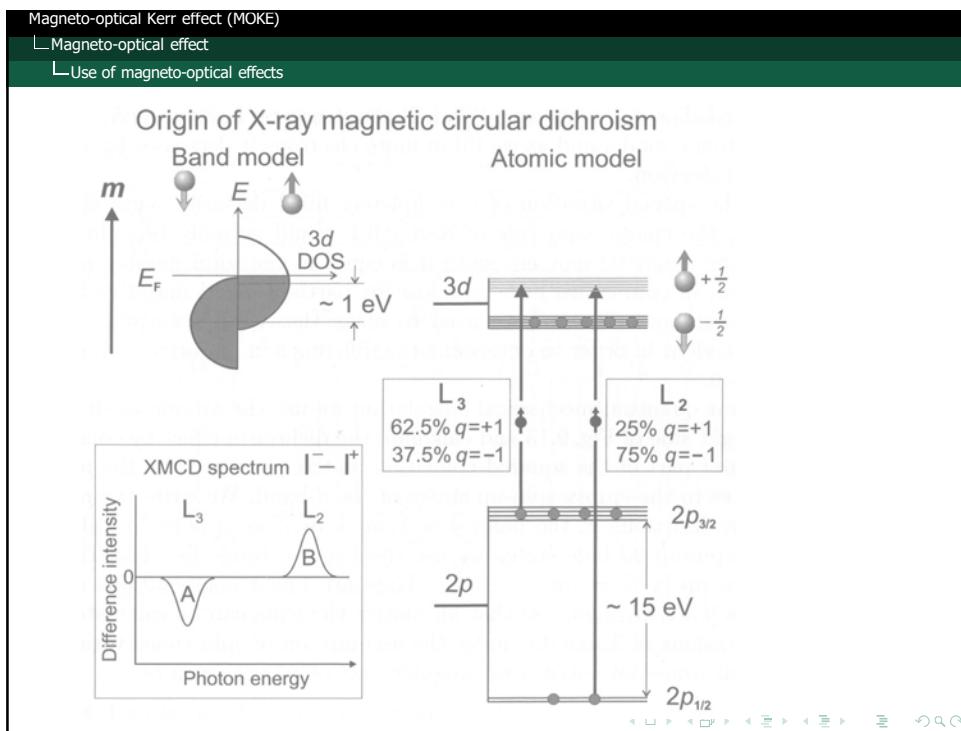
Stöhr, Siegmann, Magnetism: From fundamentals to nanoscale dynamics

Starting L2, L3 edge (i.e. $2p^{1/2}$, $2p^{3/2}$, respectively):

$$I_{XAS, p \rightarrow d} \sim N_h$$


N_h : number of free d-states. $p \rightarrow s$ has small contribution.

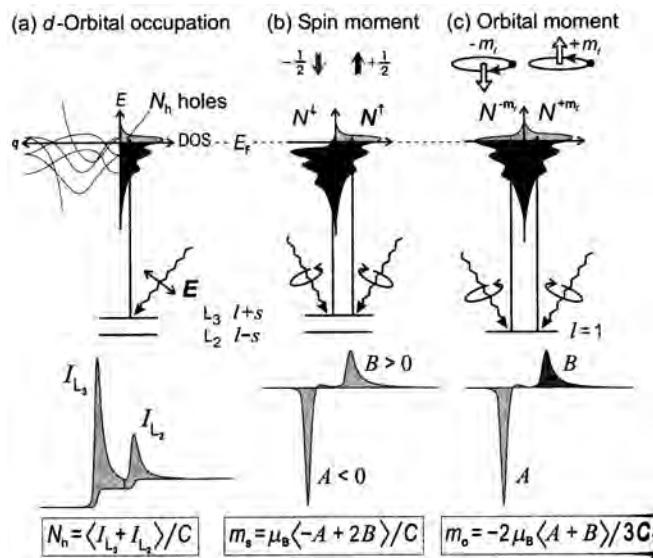
Magneto-optical Kerr effect (MOKE)



- └ Magneto-optical effect
- └ Use of magneto-optical effects

XMCD: X-ray Magnetic circular dichroism:

Circular Dichroism: different absorption for circularly left and right light polarization.

Different absorbed intensity for opposite magnetization orientations.



Magneto-optical Kerr effect (MOKE)

└ Magneto-optical effect

└ Use of magneto-optical effects

XMCD: sum rules:

Magneto-optical Kerr effect (MOKE)

└ Magneto-optical effect

└ Use of magneto-optical effects

Advantages of X-ray spectroscopies:

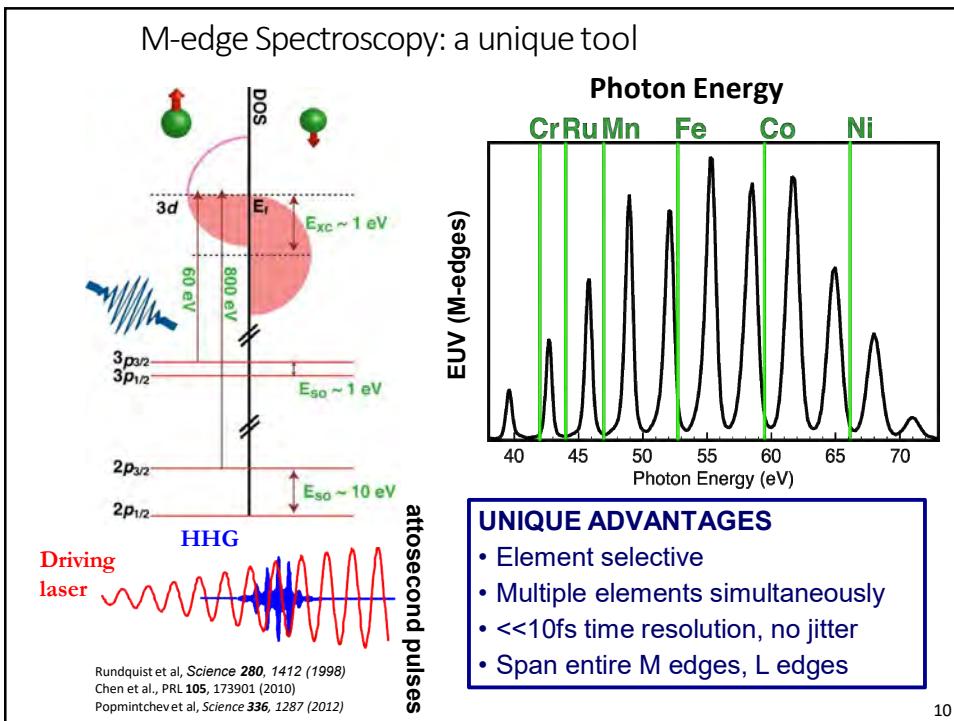
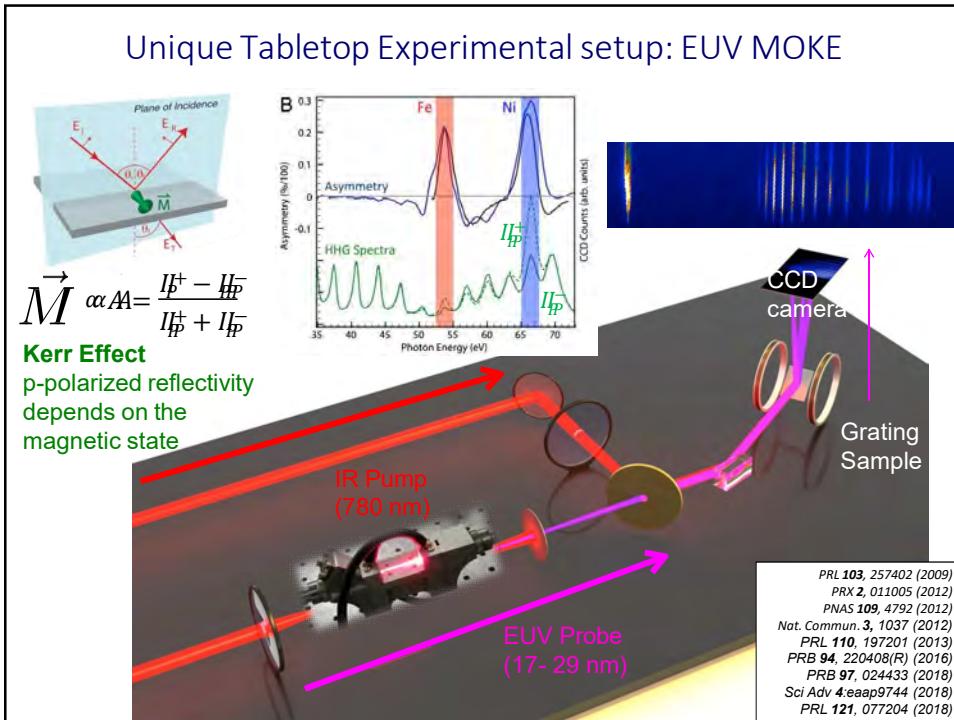
- element selective.
- quantitative determination of material characterization (e.g. magnetic moment, orbital moment).
- can be both interface or bulk sensitive.
- can provide excellent lateral resolution ($\sim 15\text{ nm}$).
- can provide excellent time resolution ($\sim 100\text{ fs}$).

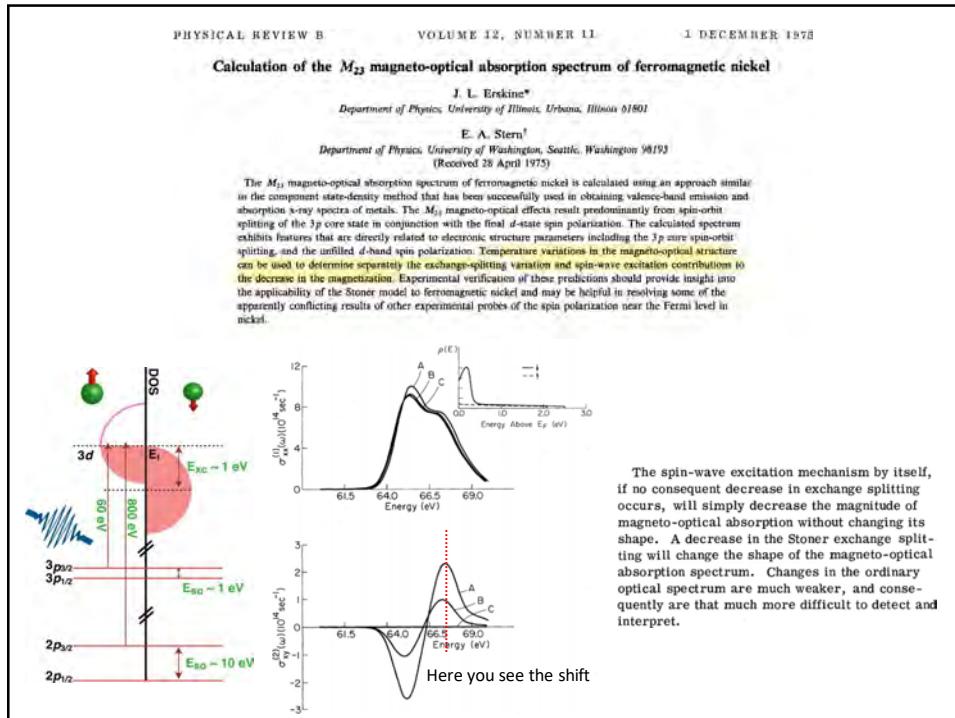
Disadvantages:

- due to width of the initial (core) line, the energy resolution is limited to $\sim 1\text{ eV}$.
- synchrotron needed (or high harmonics, see next slides)

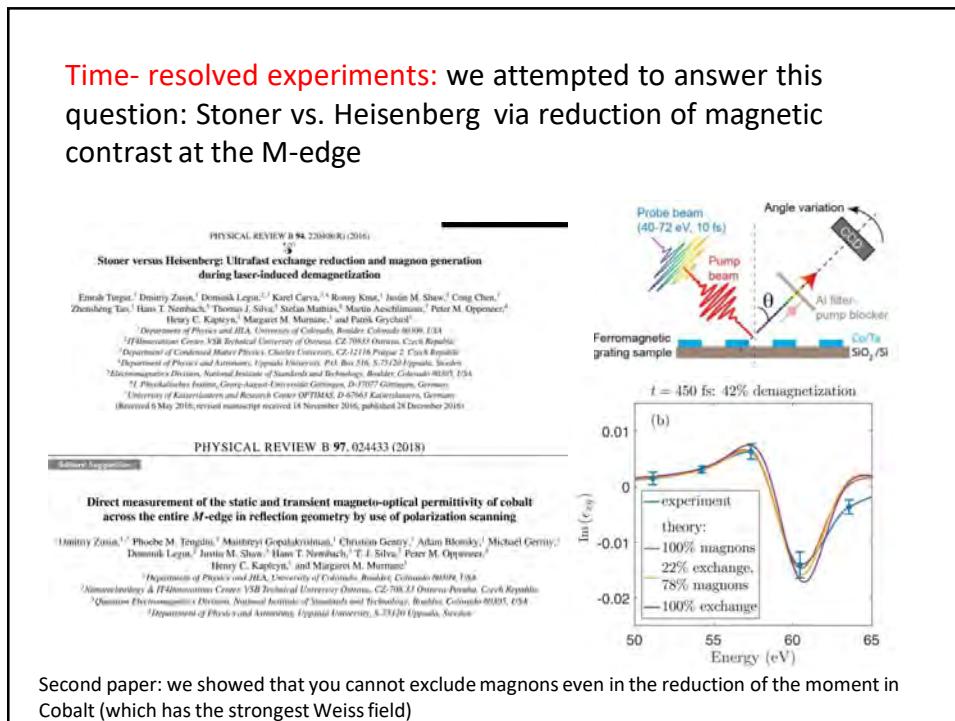
Magneto-optical Kerr effect (MOKE)

└ Magneto-optical effect



└ dc transport


DC conductivity:

DC conductivity can be understand as a limit of absorption spectroscopy for $\omega \rightarrow 0$.


Due to different history and different available experimental techniques, different names are used in each area:

Transport (dc)	Optics	X-ray
conductivity	absorption	~ X-ray absorption (XAS)
Hall effect	MOKE effect	XMCD
quadratic-Hall effect	quadratic MOKE (QMOKE)	~ X-ray linear magnetic dichroism
Anisotropy magneto-resistance (AMR)	Cotton-Mouton, Voigt effect	X-ray linear magnetic dichroism

The spin-wave excitation mechanism by itself, if no consequent decrease in exchange splitting occurs, will simply decrease the magnitude of magneto-optical absorption without changing its shape. A decrease in the Stoner exchange splitting will change the shape of the magneto-optical absorption spectrum. Changes in the ordinary optical spectrum are much weaker, and consequently are that much more difficult to detect and interpret.

Here we directly compared magneto-optical results to photoemission data

Band structure in Ni

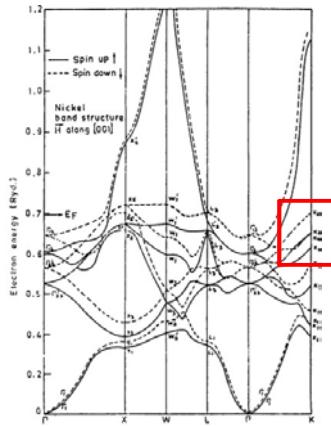
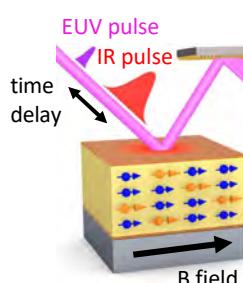
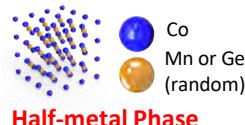


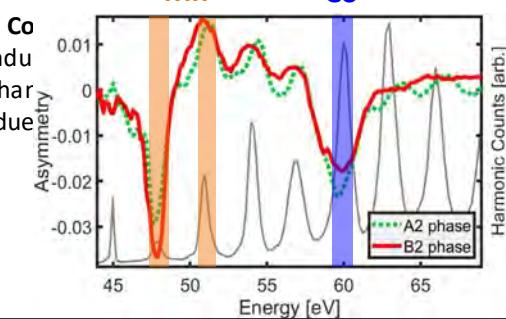
Fig. 1. The band structure of ferromagnetic nickel

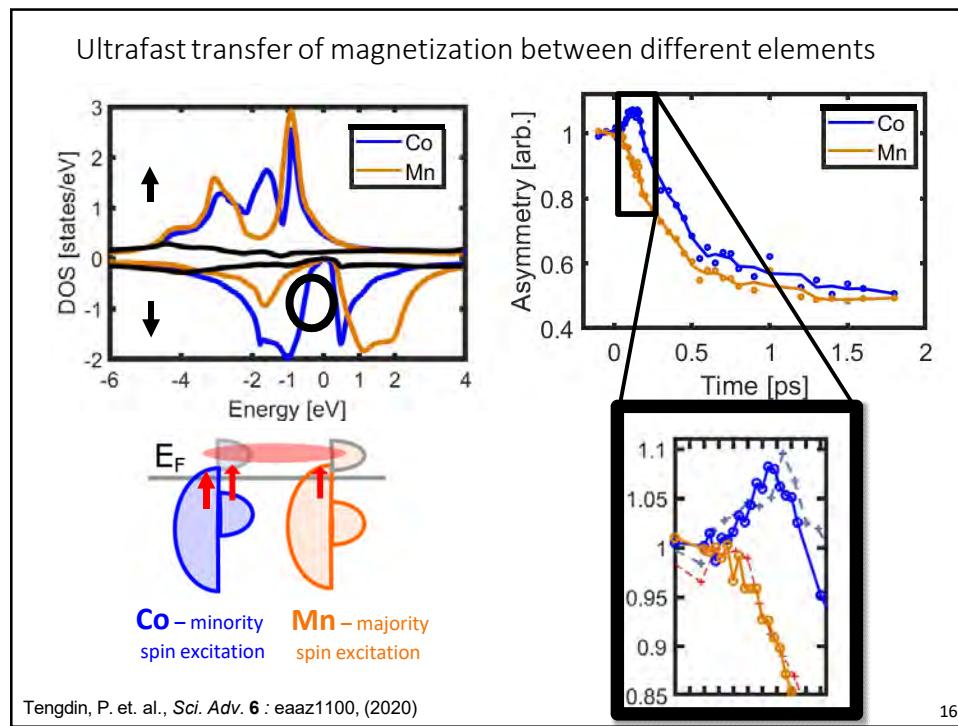
SCIENCE ADVANCES | RESEARCH ARTICLE


PHYSICS

Critical behavior within 20 fs drives the out-of-equilibrium laser-induced magnetic phase transition in nickel


Phoebe Tengdin,^{1*} Wenjing You,^{1*} Cong Chen,¹ Xun Shi,^{1†} Dmitry Zusin,¹ Yingchao Zhang,¹ Christian Gentry,² Adam Blonsky,² Mark Keller,² Peter M. Oppeneer,¹ Henry C. Kapteyn,¹ Zhengsheng Tao,^{1†} Margaret M. Murnane¹


Light induced spin transfer: Half metallic System



- Half metallic: one spin state conduction
- Half-metal gap in Mn is bigger than in Co
- Expect to see slower dynamics due to the half-metallic gap

Half-metal Phase

